reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//

#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_mapping.h"
#include "hwasan_report.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"

using namespace __sanitizer;

namespace __hwasan {

class ScopedReport {
 public:
  ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
    BlockingMutexLock lock(&error_message_lock_);
    error_message_ptr_ = fatal ? &error_message_ : nullptr;
    ++hwasan_report_count;
  }

  ~ScopedReport() {
    {
      BlockingMutexLock lock(&error_message_lock_);
      if (fatal)
        SetAbortMessage(error_message_.data());
      error_message_ptr_ = nullptr;
    }
    if (common_flags()->print_module_map >= 2 ||
        (fatal && common_flags()->print_module_map))
      DumpProcessMap();
    if (fatal)
      Die();
  }

  static void MaybeAppendToErrorMessage(const char *msg) {
    BlockingMutexLock lock(&error_message_lock_);
    if (!error_message_ptr_)
      return;
    uptr len = internal_strlen(msg);
    uptr old_size = error_message_ptr_->size();
    error_message_ptr_->resize(old_size + len);
    // overwrite old trailing '\0', keep new trailing '\0' untouched.
    internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
  }
 private:
  ScopedErrorReportLock error_report_lock_;
  InternalMmapVector<char> error_message_;
  bool fatal;

  static InternalMmapVector<char> *error_message_ptr_;
  static BlockingMutex error_message_lock_;
};

InternalMmapVector<char> *ScopedReport::error_message_ptr_;
BlockingMutex ScopedReport::error_message_lock_;

// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
  ScopedReport::MaybeAppendToErrorMessage(buffer);
}

static StackTrace GetStackTraceFromId(u32 id) {
  CHECK(id);
  StackTrace res = StackDepotGet(id);
  CHECK(res.trace);
  return res;
}

// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
 public:
  SavedStackAllocations(StackAllocationsRingBuffer *rb) {
    uptr size = rb->size() * sizeof(uptr);
    void *storage =
        MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
    new (&rb_) StackAllocationsRingBuffer(*rb, storage);
  }

  ~SavedStackAllocations() {
    StackAllocationsRingBuffer *rb = get();
    UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
  }

  StackAllocationsRingBuffer *get() {
    return (StackAllocationsRingBuffer *)&rb_;
  }

 private:
  uptr rb_;
};

class Decorator: public __sanitizer::SanitizerCommonDecorator {
 public:
  Decorator() : SanitizerCommonDecorator() { }
  const char *Access() { return Blue(); }
  const char *Allocation() const { return Magenta(); }
  const char *Origin() const { return Magenta(); }
  const char *Name() const { return Green(); }
  const char *Location() { return Green(); }
  const char *Thread() { return Green(); }
};

// Returns the index of the rb element that matches tagged_addr (plus one),
// or zero if found nothing.
uptr FindHeapAllocation(HeapAllocationsRingBuffer *rb,
                        uptr tagged_addr,
                        HeapAllocationRecord *har) {
  if (!rb) return 0;
  for (uptr i = 0, size = rb->size(); i < size; i++) {
    auto h = (*rb)[i];
    if (h.tagged_addr <= tagged_addr &&
        h.tagged_addr + h.requested_size > tagged_addr) {
      *har = h;
      return i + 1;
    }
  }
  return 0;
}

static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
                                  tag_t addr_tag, uptr untagged_addr) {
  uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
  bool found_local = false;
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    tag_t base_tag =
        reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
    uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
    uptr pc_mask = (1ULL << kRecordFPShift) - 1;
    uptr pc = record & pc_mask;
    FrameInfo frame;
    if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
      for (LocalInfo &local : frame.locals) {
        if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
          continue;
        tag_t obj_tag = base_tag ^ local.tag_offset;
        if (obj_tag != addr_tag)
          continue;
        // Calculate the offset from the object address to the faulting
        // address. Because we only store bits 4-19 of FP (bits 0-3 are
        // guaranteed to be zero), the calculation is performed mod 2^20 and may
        // harmlessly underflow if the address mod 2^20 is below the object
        // address.
        uptr obj_offset =
            (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
        if (obj_offset >= local.size)
          continue;
        if (!found_local) {
          Printf("Potentially referenced stack objects:\n");
          found_local = true;
        }
        Printf("  %s in %s %s:%d\n", local.name, local.function_name,
               local.decl_file, local.decl_line);
      }
      frame.Clear();
    }
  }

  if (found_local)
    return;

  // We didn't find any locals. Most likely we don't have symbols, so dump
  // the information that we have for offline analysis.
  InternalScopedString frame_desc(GetPageSizeCached() * 2);
  Printf("Previously allocated frames:\n");
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    uptr pc_mask = (1ULL << 48) - 1;
    uptr pc = record & pc_mask;
    frame_desc.append("  record_addr:0x%zx record:0x%zx",
                      reinterpret_cast<uptr>(record_addr), record);
    if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
      RenderFrame(&frame_desc, " %F %L\n", 0, frame->info,
                  common_flags()->symbolize_vs_style,
                  common_flags()->strip_path_prefix);
      frame->ClearAll();
    }
    Printf("%s", frame_desc.data());
    frame_desc.clear();
  }
}

// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
  if (tag == *tag_ptr)
    return true;
  if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
    return false;
  uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
  tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
  return tag == inline_tag;
}

void PrintAddressDescription(
    uptr tagged_addr, uptr access_size,
    StackAllocationsRingBuffer *current_stack_allocations) {
  Decorator d;
  int num_descriptions_printed = 0;
  uptr untagged_addr = UntagAddr(tagged_addr);

  // Print some very basic information about the address, if it's a heap.
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (uptr beg = chunk.Beg()) {
    uptr size = chunk.ActualSize();
    Printf("%s[%p,%p) is a %s %s heap chunk; "
           "size: %zd offset: %zd\n%s",
           d.Location(),
           beg, beg + size,
           chunk.FromSmallHeap() ? "small" : "large",
           chunk.IsAllocated() ? "allocated" : "unallocated",
           size, untagged_addr - beg,
           d.Default());
  }

  // Check if this looks like a heap buffer overflow by scanning
  // the shadow left and right and looking for the first adjacent
  // object with a different memory tag. If that tag matches addr_tag,
  // check the allocator if it has a live chunk there.
  tag_t addr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
  for (int i = 0; i < 1000; i++) {
    if (TagsEqual(addr_tag, left)) {
      candidate = left;
      break;
    }
    --left;
    if (TagsEqual(addr_tag, right)) {
      candidate = right;
      break;
    }
    ++right;
  }

  if (candidate) {
    uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
    HwasanChunkView chunk = FindHeapChunkByAddress(mem);
    if (chunk.IsAllocated()) {
      Printf("%s", d.Location());
      Printf("%p is located %zd bytes to the %s of %zd-byte region [%p,%p)\n",
             untagged_addr,
             candidate == left ? untagged_addr - chunk.End()
                               : chunk.Beg() - untagged_addr,
             candidate == left ? "right" : "left", chunk.UsedSize(),
             chunk.Beg(), chunk.End());
      Printf("%s", d.Allocation());
      Printf("allocated here:\n");
      Printf("%s", d.Default());
      GetStackTraceFromId(chunk.GetAllocStackId()).Print();
      num_descriptions_printed++;
    } else {
      // Check whether the address points into a loaded library. If so, this is
      // most likely a global variable.
      const char *module_name;
      uptr module_address;
      Symbolizer *sym = Symbolizer::GetOrInit();
      if (sym->GetModuleNameAndOffsetForPC(mem, &module_name,
                                           &module_address)) {
        DataInfo info;
        if (sym->SymbolizeData(mem, &info) && info.start) {
          Printf(
              "%p is located %zd bytes to the %s of %zd-byte global variable "
              "%s [%p,%p) in %s\n",
              untagged_addr,
              candidate == left ? untagged_addr - (info.start + info.size)
                                : info.start - untagged_addr,
              candidate == left ? "right" : "left", info.size, info.name,
              info.start, info.start + info.size, module_name);
        } else {
          Printf("%p is located to the %s of a global variable in (%s+0x%x)\n",
                 untagged_addr, candidate == left ? "right" : "left",
                 module_name, module_address);
        }
        num_descriptions_printed++;
      }
    }
  }

  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
    // Scan all threads' ring buffers to find if it's a heap-use-after-free.
    HeapAllocationRecord har;
    if (uptr D = FindHeapAllocation(t->heap_allocations(), tagged_addr, &har)) {
      Printf("%s", d.Location());
      Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
             untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
             har.requested_size, UntagAddr(har.tagged_addr),
             UntagAddr(har.tagged_addr) + har.requested_size);
      Printf("%s", d.Allocation());
      Printf("freed by thread T%zd here:\n", t->unique_id());
      Printf("%s", d.Default());
      GetStackTraceFromId(har.free_context_id).Print();

      Printf("%s", d.Allocation());
      Printf("previously allocated here:\n", t);
      Printf("%s", d.Default());
      GetStackTraceFromId(har.alloc_context_id).Print();

      // Print a developer note: the index of this heap object
      // in the thread's deallocation ring buffer.
      Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", D,
             flags()->heap_history_size);

      t->Announce();
      num_descriptions_printed++;
    }

    // Very basic check for stack memory.
    if (t->AddrIsInStack(untagged_addr)) {
      Printf("%s", d.Location());
      Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
             t->unique_id());
      Printf("%s", d.Default());
      t->Announce();

      auto *sa = (t == GetCurrentThread() && current_stack_allocations)
                     ? current_stack_allocations
                     : t->stack_allocations();
      PrintStackAllocations(sa, addr_tag, untagged_addr);
      num_descriptions_printed++;
    }
  });

  // Print the remaining threads, as an extra information, 1 line per thread.
  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });

  if (!num_descriptions_printed)
    // We exhausted our possibilities. Bail out.
    Printf("HWAddressSanitizer can not describe address in more detail.\n");
}

void ReportStats() {}

static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
                                   void (*print_tag)(InternalScopedString &s,
                                                     tag_t *tag)) {
  const uptr row_len = 16;  // better be power of two.
  tag_t *center_row_beg = reinterpret_cast<tag_t *>(
      RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
  tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
  tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
  InternalScopedString s(GetPageSizeCached() * 8);
  for (tag_t *row = beg_row; row < end_row; row += row_len) {
    s.append("%s", row == center_row_beg ? "=>" : "  ");
    for (uptr i = 0; i < row_len; i++) {
      s.append("%s", row + i == tag_ptr ? "[" : " ");
      print_tag(s, &row[i]);
      s.append("%s", row + i == tag_ptr ? "]" : " ");
    }
    s.append("%s\n", row == center_row_beg ? "<=" : "  ");
  }
  Printf("%s", s.data());
}

static void PrintTagsAroundAddr(tag_t *tag_ptr) {
  Printf(
      "Memory tags around the buggy address (one tag corresponds to %zd "
      "bytes):\n", kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
    s.append("%02x", *tag);
  });

  Printf(
      "Tags for short granules around the buggy address (one tag corresponds "
      "to %zd bytes):\n",
      kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
    if (*tag >= 1 && *tag <= kShadowAlignment) {
      uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
      s.append("%02x",
               *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
    } else {
      s.append("..");
    }
  });
  Printf(
      "See "
      "https://clang.llvm.org/docs/"
      "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
      "description of short granule tags\n");
}

void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
  ScopedReport R(flags()->halt_on_error);

  uptr untagged_addr = UntagAddr(tagged_addr);
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  tag_t mem_tag = *tag_ptr;
  Decorator d;
  Printf("%s", d.Error());
  uptr pc = stack->size ? stack->trace[0] : 0;
  const char *bug_type = "invalid-free";
  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
         untagged_addr, pc);
  Printf("%s", d.Access());
  Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, 0, nullptr);

  PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
                           const u8 *expected) {
  uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
  ScopedReport R(flags()->halt_on_error);
  Decorator d;
  uptr untagged_addr = UntagAddr(tagged_addr);
  Printf("%s", d.Error());
  const char *bug_type = "allocation-tail-overwritten";
  Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
         bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
  Printf("\n%s", d.Default());
  stack->Print();
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (chunk.Beg()) {
    Printf("%s", d.Allocation());
    Printf("allocated here:\n");
    Printf("%s", d.Default());
    GetStackTraceFromId(chunk.GetAllocStackId()).Print();
  }

  InternalScopedString s(GetPageSizeCached() * 8);
  CHECK_GT(tail_size, 0U);
  CHECK_LT(tail_size, kShadowAlignment);
  u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
  s.append("Tail contains: ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%02x ", tail[i]);
  s.append("\n");
  s.append("Expected:      ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%02x ", expected[i]);
  s.append("\n");
  s.append("               ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append("   ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%s ", expected[i] != tail[i] ? "^^" : "  ");

  s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
    "to the right of a heap object, but within the %zd-byte granule, e.g.\n"
    "   char *x = new char[20];\n"
    "   x[25] = 42;\n"
    "%s does not detect such bugs in uninstrumented code at the time of write,"
    "\nbut can detect them at the time of free/delete.\n"
    "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
    kShadowAlignment, SanitizerToolName);
  Printf("%s", s.data());
  GetCurrentThread()->Announce();

  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
                       bool is_store, bool fatal, uptr *registers_frame) {
  ScopedReport R(fatal);
  SavedStackAllocations current_stack_allocations(
      GetCurrentThread()->stack_allocations());

  Decorator d;
  Printf("%s", d.Error());
  uptr untagged_addr = UntagAddr(tagged_addr);
  // TODO: when possible, try to print heap-use-after-free, etc.
  const char *bug_type = "tag-mismatch";
  uptr pc = stack->size ? stack->trace[0] : 0;
  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
         untagged_addr, pc);

  Thread *t = GetCurrentThread();

  sptr offset =
      __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
  CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr =
      reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
  tag_t mem_tag = *tag_ptr;

  Printf("%s", d.Access());
  Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
         is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
         mem_tag, t->unique_id());
  if (offset != 0)
    Printf("Invalid access starting at offset [%zu, %zu)\n", offset,
           Min(access_size, static_cast<uptr>(offset) + (1 << kShadowScale)));
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, access_size,
                          current_stack_allocations.get());
  t->Announce();

  PrintTagsAroundAddr(tag_ptr);

  if (registers_frame)
    ReportRegisters(registers_frame, pc);

  ReportErrorSummary(bug_type, stack);
}

// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_aarch64.S).
void ReportRegisters(uptr *frame, uptr pc) {
  Printf("Registers where the failure occurred (pc %p):\n", pc);

  // We explicitly print a single line (4 registers/line) each iteration to
  // reduce the amount of logcat error messages printed. Each Printf() will
  // result in a new logcat line, irrespective of whether a newline is present,
  // and so we wish to reduce the number of Printf() calls we have to make.
  Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
       frame[0], frame[1], frame[2], frame[3]);
  Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
       frame[4], frame[5], frame[6], frame[7]);
  Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
       frame[8], frame[9], frame[10], frame[11]);
  Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
       frame[12], frame[13], frame[14], frame[15]);
  Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
       frame[16], frame[17], frame[18], frame[19]);
  Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
       frame[20], frame[21], frame[22], frame[23]);
  Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
       frame[24], frame[25], frame[26], frame[27]);
  Printf("    x28 %016llx  x29 %016llx  x30 %016llx\n",
       frame[28], frame[29], frame[30]);
}

}  // namespace __hwasan