reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
//===-- xray_fdr_logging.cpp -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Here we implement the Flight Data Recorder mode for XRay, where we use
// compact structures to store records in memory as well as when writing out the
// data to files.
//
//===----------------------------------------------------------------------===//
#include "xray_fdr_logging.h"
#include <cassert>
#include <errno.h>
#include <limits>
#include <memory>
#include <pthread.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_allocator.h"
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_fdr_controller.h"
#include "xray_fdr_flags.h"
#include "xray_fdr_log_writer.h"
#include "xray_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

static atomic_sint32_t LoggingStatus = {
    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};

namespace {

// Group together thread-local-data in a struct, then hide it behind a function
// call so that it can be initialized on first use instead of as a global. We
// force the alignment to 64-bytes for x86 cache line alignment, as this
// structure is used in the hot path of implementation.
struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
  BufferQueue::Buffer Buffer{};
  BufferQueue *BQ = nullptr;

  using LogWriterStorage =
      typename std::aligned_storage<sizeof(FDRLogWriter),
                                    alignof(FDRLogWriter)>::type;

  LogWriterStorage LWStorage;
  FDRLogWriter *Writer = nullptr;

  using ControllerStorage =
      typename std::aligned_storage<sizeof(FDRController<>),
                                    alignof(FDRController<>)>::type;
  ControllerStorage CStorage;
  FDRController<> *Controller = nullptr;
};

} // namespace

static_assert(std::is_trivially_destructible<ThreadLocalData>::value,
              "ThreadLocalData must be trivially destructible");

// Use a global pthread key to identify thread-local data for logging.
static pthread_key_t Key;

// Global BufferQueue.
static std::aligned_storage<sizeof(BufferQueue)>::type BufferQueueStorage;
static BufferQueue *BQ = nullptr;

// Global thresholds for function durations.
static atomic_uint64_t ThresholdTicks{0};

// Global for ticks per second.
static atomic_uint64_t TicksPerSec{0};

static atomic_sint32_t LogFlushStatus = {
    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};

// This function will initialize the thread-local data structure used by the FDR
// logging implementation and return a reference to it. The implementation
// details require a bit of care to maintain.
//
// First, some requirements on the implementation in general:
//
//   - XRay handlers should not call any memory allocation routines that may
//     delegate to an instrumented implementation. This means functions like
//     malloc() and free() should not be called while instrumenting.
//
//   - We would like to use some thread-local data initialized on first-use of
//     the XRay instrumentation. These allow us to implement unsynchronized
//     routines that access resources associated with the thread.
//
// The implementation here uses a few mechanisms that allow us to provide both
// the requirements listed above. We do this by:
//
//   1. Using a thread-local aligned storage buffer for representing the
//      ThreadLocalData struct. This data will be uninitialized memory by
//      design.
//
//   2. Not requiring a thread exit handler/implementation, keeping the
//      thread-local as purely a collection of references/data that do not
//      require cleanup.
//
// We're doing this to avoid using a `thread_local` object that has a
// non-trivial destructor, because the C++ runtime might call std::malloc(...)
// to register calls to destructors. Deadlocks may arise when, for example, an
// externally provided malloc implementation is XRay instrumented, and
// initializing the thread-locals involves calling into malloc. A malloc
// implementation that does global synchronization might be holding a lock for a
// critical section, calling a function that might be XRay instrumented (and
// thus in turn calling into malloc by virtue of registration of the
// thread_local's destructor).
#if XRAY_HAS_TLS_ALIGNAS
static_assert(alignof(ThreadLocalData) >= 64,
              "ThreadLocalData must be cache line aligned.");
#endif
static ThreadLocalData &getThreadLocalData() {
  thread_local typename std::aligned_storage<
      sizeof(ThreadLocalData), alignof(ThreadLocalData)>::type TLDStorage{};

  if (pthread_getspecific(Key) == NULL) {
    new (reinterpret_cast<ThreadLocalData *>(&TLDStorage)) ThreadLocalData{};
    pthread_setspecific(Key, &TLDStorage);
  }

  return *reinterpret_cast<ThreadLocalData *>(&TLDStorage);
}

static XRayFileHeader &fdrCommonHeaderInfo() {
  static std::aligned_storage<sizeof(XRayFileHeader)>::type HStorage;
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  static bool TSCSupported = true;
  static uint64_t CycleFrequency = NanosecondsPerSecond;
  pthread_once(
      &OnceInit, +[] {
        XRayFileHeader &H = reinterpret_cast<XRayFileHeader &>(HStorage);
        // Version 2 of the log writes the extents of the buffer, instead of
        // relying on an end-of-buffer record.
        // Version 3 includes PID metadata record.
        // Version 4 includes CPU data in the custom event records.
        // Version 5 uses relative deltas for custom and typed event records,
        // and removes the CPU data in custom event records (similar to how
        // function records use deltas instead of full TSCs and rely on other
        // metadata records for TSC wraparound and CPU migration).
        H.Version = 5;
        H.Type = FileTypes::FDR_LOG;

        // Test for required CPU features and cache the cycle frequency
        TSCSupported = probeRequiredCPUFeatures();
        if (TSCSupported)
          CycleFrequency = getTSCFrequency();
        H.CycleFrequency = CycleFrequency;

        // FIXME: Actually check whether we have 'constant_tsc' and
        // 'nonstop_tsc' before setting the values in the header.
        H.ConstantTSC = 1;
        H.NonstopTSC = 1;
      });
  return reinterpret_cast<XRayFileHeader &>(HStorage);
}

// This is the iterator implementation, which knows how to handle FDR-mode
// specific buffers. This is used as an implementation of the iterator function
// needed by __xray_set_buffer_iterator(...). It maintains a global state of the
// buffer iteration for the currently installed FDR mode buffers. In particular:
//
//   - If the argument represents the initial state of XRayBuffer ({nullptr, 0})
//     then the iterator returns the header information.
//   - If the argument represents the header information ({address of header
//     info, size of the header info}) then it returns the first FDR buffer's
//     address and extents.
//   - It will keep returning the next buffer and extents as there are more
//     buffers to process. When the input represents the last buffer, it will
//     return the initial state to signal completion ({nullptr, 0}).
//
// See xray/xray_log_interface.h for more details on the requirements for the
// implementations of __xray_set_buffer_iterator(...) and
// __xray_log_process_buffers(...).
XRayBuffer fdrIterator(const XRayBuffer B) {
  DCHECK(internal_strcmp(__xray_log_get_current_mode(), "xray-fdr") == 0);
  DCHECK(BQ->finalizing());

  if (BQ == nullptr || !BQ->finalizing()) {
    if (Verbosity())
      Report(
          "XRay FDR: Failed global buffer queue is null or not finalizing!\n");
    return {nullptr, 0};
  }

  // We use a global scratch-pad for the header information, which only gets
  // initialized the first time this function is called. We'll update one part
  // of this information with some relevant data (in particular the number of
  // buffers to expect).
  static std::aligned_storage<sizeof(XRayFileHeader)>::type HeaderStorage;
  static pthread_once_t HeaderOnce = PTHREAD_ONCE_INIT;
  pthread_once(
      &HeaderOnce, +[] {
        reinterpret_cast<XRayFileHeader &>(HeaderStorage) =
            fdrCommonHeaderInfo();
      });

  // We use a convenience alias for code referring to Header from here on out.
  auto &Header = reinterpret_cast<XRayFileHeader &>(HeaderStorage);
  if (B.Data == nullptr && B.Size == 0) {
    Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
    return XRayBuffer{static_cast<void *>(&Header), sizeof(Header)};
  }

  static BufferQueue::const_iterator It{};
  static BufferQueue::const_iterator End{};
  static uint8_t *CurrentBuffer{nullptr};
  static size_t SerializedBufferSize = 0;
  if (B.Data == static_cast<void *>(&Header) && B.Size == sizeof(Header)) {
    // From this point on, we provide raw access to the raw buffer we're getting
    // from the BufferQueue. We're relying on the iterators from the current
    // Buffer queue.
    It = BQ->cbegin();
    End = BQ->cend();
  }

  if (CurrentBuffer != nullptr) {
    deallocateBuffer(CurrentBuffer, SerializedBufferSize);
    CurrentBuffer = nullptr;
  }

  if (It == End)
    return {nullptr, 0};

  // Set up the current buffer to contain the extents like we would when writing
  // out to disk. The difference here would be that we still write "empty"
  // buffers, or at least go through the iterators faithfully to let the
  // handlers see the empty buffers in the queue.
  //
  // We need this atomic fence here to ensure that writes happening to the
  // buffer have been committed before we load the extents atomically. Because
  // the buffer is not explicitly synchronised across threads, we rely on the
  // fence ordering to ensure that writes we expect to have been completed
  // before the fence are fully committed before we read the extents.
  atomic_thread_fence(memory_order_acquire);
  auto BufferSize = atomic_load(It->Extents, memory_order_acquire);
  SerializedBufferSize = BufferSize + sizeof(MetadataRecord);
  CurrentBuffer = allocateBuffer(SerializedBufferSize);
  if (CurrentBuffer == nullptr)
    return {nullptr, 0};

  // Write out the extents as a Metadata Record into the CurrentBuffer.
  MetadataRecord ExtentsRecord;
  ExtentsRecord.Type = uint8_t(RecordType::Metadata);
  ExtentsRecord.RecordKind =
      uint8_t(MetadataRecord::RecordKinds::BufferExtents);
  internal_memcpy(ExtentsRecord.Data, &BufferSize, sizeof(BufferSize));
  auto AfterExtents =
      static_cast<char *>(internal_memcpy(CurrentBuffer, &ExtentsRecord,
                                          sizeof(MetadataRecord))) +
      sizeof(MetadataRecord);
  internal_memcpy(AfterExtents, It->Data, BufferSize);

  XRayBuffer Result;
  Result.Data = CurrentBuffer;
  Result.Size = SerializedBufferSize;
  ++It;
  return Result;
}

// Must finalize before flushing.
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&LoggingStatus, memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_FINALIZED) {
    if (Verbosity())
      Report("Not flushing log, implementation is not finalized.\n");
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  if (!atomic_compare_exchange_strong(&LogFlushStatus, &Result,
                                      XRayLogFlushStatus::XRAY_LOG_FLUSHING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Not flushing log, implementation is still finalizing.\n");
    return static_cast<XRayLogFlushStatus>(Result);
  }

  if (BQ == nullptr) {
    if (Verbosity())
      Report("Cannot flush when global buffer queue is null.\n");
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  // We wait a number of milliseconds to allow threads to see that we've
  // finalised before attempting to flush the log.
  SleepForMillis(fdrFlags()->grace_period_ms);

  // At this point, we're going to uninstall the iterator implementation, before
  // we decide to do anything further with the global buffer queue.
  __xray_log_remove_buffer_iterator();

  // Once flushed, we should set the global status of the logging implementation
  // to "uninitialized" to allow for FDR-logging multiple runs.
  auto ResetToUnitialized = at_scope_exit([] {
    atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
                 memory_order_release);
  });

  auto CleanupBuffers = at_scope_exit([] {
    auto &TLD = getThreadLocalData();
    if (TLD.Controller != nullptr)
      TLD.Controller->flush();
  });

  if (fdrFlags()->no_file_flush) {
    if (Verbosity())
      Report("XRay FDR: Not flushing to file, 'no_file_flush=true'.\n");

    atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
                 memory_order_release);
    return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  }

  // We write out the file in the following format:
  //
  //   1) We write down the XRay file header with version 1, type FDR_LOG.
  //   2) Then we use the 'apply' member of the BufferQueue that's live, to
  //      ensure that at this point in time we write down the buffers that have
  //      been released (and marked "used") -- we dump the full buffer for now
  //      (fixed-sized) and let the tools reading the buffers deal with the data
  //      afterwards.
  //
  LogWriter *LW = LogWriter::Open();
  if (LW == nullptr) {
    auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
    atomic_store(&LogFlushStatus, Result, memory_order_release);
    return Result;
  }

  XRayFileHeader Header = fdrCommonHeaderInfo();
  Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
  LW->WriteAll(reinterpret_cast<char *>(&Header),
               reinterpret_cast<char *>(&Header) + sizeof(Header));

  // Release the current thread's buffer before we attempt to write out all the
  // buffers. This ensures that in case we had only a single thread going, that
  // we are able to capture the data nonetheless.
  auto &TLD = getThreadLocalData();
  if (TLD.Controller != nullptr)
    TLD.Controller->flush();

  BQ->apply([&](const BufferQueue::Buffer &B) {
    // Starting at version 2 of the FDR logging implementation, we only write
    // the records identified by the extents of the buffer. We use the Extents
    // from the Buffer and write that out as the first record in the buffer.  We
    // still use a Metadata record, but fill in the extents instead for the
    // data.
    MetadataRecord ExtentsRecord;
    auto BufferExtents = atomic_load(B.Extents, memory_order_acquire);
    DCHECK(BufferExtents <= B.Size);
    ExtentsRecord.Type = uint8_t(RecordType::Metadata);
    ExtentsRecord.RecordKind =
        uint8_t(MetadataRecord::RecordKinds::BufferExtents);
    internal_memcpy(ExtentsRecord.Data, &BufferExtents, sizeof(BufferExtents));
    if (BufferExtents > 0) {
      LW->WriteAll(reinterpret_cast<char *>(&ExtentsRecord),
                   reinterpret_cast<char *>(&ExtentsRecord) +
                       sizeof(MetadataRecord));
      LW->WriteAll(reinterpret_cast<char *>(B.Data),
                   reinterpret_cast<char *>(B.Data) + BufferExtents);
    }
  });

  atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
               memory_order_release);
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_FINALIZING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Cannot finalize log, implementation not initialized.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  // Do special things to make the log finalize itself, and not allow any more
  // operations to be performed until re-initialized.
  if (BQ == nullptr) {
    if (Verbosity())
      Report("Attempting to finalize an uninitialized global buffer!\n");
  } else {
    BQ->finalize();
  }

  atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
               memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

struct TSCAndCPU {
  uint64_t TSC = 0;
  unsigned char CPU = 0;
};

static TSCAndCPU getTimestamp() XRAY_NEVER_INSTRUMENT {
  // We want to get the TSC as early as possible, so that we can check whether
  // we've seen this CPU before. We also do it before we load anything else,
  // to allow for forward progress with the scheduling.
  TSCAndCPU Result;

  // Test once for required CPU features
  static pthread_once_t OnceProbe = PTHREAD_ONCE_INIT;
  static bool TSCSupported = true;
  pthread_once(
      &OnceProbe, +[] { TSCSupported = probeRequiredCPUFeatures(); });

  if (TSCSupported) {
    Result.TSC = __xray::readTSC(Result.CPU);
  } else {
    // FIXME: This code needs refactoring as it appears in multiple locations
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
      TS = {0, 0};
    }
    Result.CPU = 0;
    Result.TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
  }
  return Result;
}

thread_local atomic_uint8_t Running{0};

static bool setupTLD(ThreadLocalData &TLD) XRAY_NEVER_INSTRUMENT {
  // Check if we're finalizing, before proceeding.
  {
    auto Status = atomic_load(&LoggingStatus, memory_order_acquire);
    if (Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
        Status == XRayLogInitStatus::XRAY_LOG_FINALIZED) {
      if (TLD.Controller != nullptr) {
        TLD.Controller->flush();
        TLD.Controller = nullptr;
      }
      return false;
    }
  }

  if (UNLIKELY(TLD.Controller == nullptr)) {
    // Set up the TLD buffer queue.
    if (UNLIKELY(BQ == nullptr))
      return false;
    TLD.BQ = BQ;

    // Check that we have a valid buffer.
    if (TLD.Buffer.Generation != BQ->generation() &&
        TLD.BQ->releaseBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
      return false;

    // Set up a buffer, before setting up the log writer. Bail out on failure.
    if (TLD.BQ->getBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
      return false;

    // Set up the Log Writer for this thread.
    if (UNLIKELY(TLD.Writer == nullptr)) {
      auto *LWStorage = reinterpret_cast<FDRLogWriter *>(&TLD.LWStorage);
      new (LWStorage) FDRLogWriter(TLD.Buffer);
      TLD.Writer = LWStorage;
    } else {
      TLD.Writer->resetRecord();
    }

    auto *CStorage = reinterpret_cast<FDRController<> *>(&TLD.CStorage);
    new (CStorage)
        FDRController<>(TLD.BQ, TLD.Buffer, *TLD.Writer, clock_gettime,
                        atomic_load_relaxed(&ThresholdTicks));
    TLD.Controller = CStorage;
  }

  DCHECK_NE(TLD.Controller, nullptr);
  return true;
}

void fdrLoggingHandleArg0(int32_t FuncId,
                          XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    TLD.Controller->functionEnter(FuncId, TSC, CPU);
    return;
  case XRayEntryType::EXIT:
    TLD.Controller->functionExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::TAIL:
    TLD.Controller->functionTailExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::CUSTOM_EVENT:
  case XRayEntryType::TYPED_EVENT:
    break;
  }
}

void fdrLoggingHandleArg1(int32_t FuncId, XRayEntryType Entry,
                          uint64_t Arg) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    TLD.Controller->functionEnterArg(FuncId, TSC, CPU, Arg);
    return;
  case XRayEntryType::EXIT:
    TLD.Controller->functionExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::TAIL:
    TLD.Controller->functionTailExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::CUSTOM_EVENT:
  case XRayEntryType::TYPED_EVENT:
    break;
  }
}

void fdrLoggingHandleCustomEvent(void *Event,
                                 std::size_t EventSize) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  // Complain when we ever get at least one custom event that's larger than what
  // we can possibly support.
  if (EventSize >
      static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
    static pthread_once_t Once = PTHREAD_ONCE_INIT;
    pthread_once(
        &Once, +[] {
          Report("Custom event size too large; truncating to %d.\n",
                 std::numeric_limits<int32_t>::max());
        });
  }

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
  TLD.Controller->customEvent(TSC, CPU, Event, ReducedEventSize);
}

void fdrLoggingHandleTypedEvent(
    uint16_t EventType, const void *Event,
    std::size_t EventSize) noexcept XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  // Complain when we ever get at least one typed event that's larger than what
  // we can possibly support.
  if (EventSize >
      static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
    static pthread_once_t Once = PTHREAD_ONCE_INIT;
    pthread_once(
        &Once, +[] {
          Report("Typed event size too large; truncating to %d.\n",
                 std::numeric_limits<int32_t>::max());
        });
  }

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
  TLD.Controller->typedEvent(TSC, CPU, EventType, Event, ReducedEventSize);
}

XRayLogInitStatus fdrLoggingInit(size_t, size_t, void *Options,
                                 size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  if (Options == nullptr)
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;

  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_INITIALIZING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Cannot initialize already initialized implementation.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  if (Verbosity())
    Report("Initializing FDR mode with options: %s\n",
           static_cast<const char *>(Options));

  // TODO: Factor out the flags specific to the FDR mode implementation. For
  // now, use the global/single definition of the flags, since the FDR mode
  // flags are already defined there.
  FlagParser FDRParser;
  FDRFlags FDRFlags;
  registerXRayFDRFlags(&FDRParser, &FDRFlags);
  FDRFlags.setDefaults();

  // Override first from the general XRAY_DEFAULT_OPTIONS compiler-provided
  // options until we migrate everyone to use the XRAY_FDR_OPTIONS
  // compiler-provided options.
  FDRParser.ParseString(useCompilerDefinedFlags());
  FDRParser.ParseString(useCompilerDefinedFDRFlags());
  auto *EnvOpts = GetEnv("XRAY_FDR_OPTIONS");
  if (EnvOpts == nullptr)
    EnvOpts = "";
  FDRParser.ParseString(EnvOpts);

  // FIXME: Remove this when we fully remove the deprecated flags.
  if (internal_strlen(EnvOpts) == 0) {
    FDRFlags.func_duration_threshold_us =
        flags()->xray_fdr_log_func_duration_threshold_us;
    FDRFlags.grace_period_ms = flags()->xray_fdr_log_grace_period_ms;
  }

  // The provided options should always override the compiler-provided and
  // environment-variable defined options.
  FDRParser.ParseString(static_cast<const char *>(Options));
  *fdrFlags() = FDRFlags;
  auto BufferSize = FDRFlags.buffer_size;
  auto BufferMax = FDRFlags.buffer_max;

  if (BQ == nullptr) {
    bool Success = false;
    BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
    new (BQ) BufferQueue(BufferSize, BufferMax, Success);
    if (!Success) {
      Report("BufferQueue init failed.\n");
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }
  } else {
    if (BQ->init(BufferSize, BufferMax) != BufferQueue::ErrorCode::Ok) {
      if (Verbosity())
        Report("Failed to re-initialize global buffer queue. Init failed.\n");
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }
  }

  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  pthread_once(
      &OnceInit, +[] {
        atomic_store(&TicksPerSec,
                     probeRequiredCPUFeatures() ? getTSCFrequency()
                                                : __xray::NanosecondsPerSecond,
                     memory_order_release);
        pthread_key_create(
            &Key, +[](void *TLDPtr) {
              if (TLDPtr == nullptr)
                return;
              auto &TLD = *reinterpret_cast<ThreadLocalData *>(TLDPtr);
              if (TLD.BQ == nullptr)
                return;
              if (TLD.Buffer.Data == nullptr)
                return;
              auto EC = TLD.BQ->releaseBuffer(TLD.Buffer);
              if (EC != BufferQueue::ErrorCode::Ok)
                Report("At thread exit, failed to release buffer at %p; "
                       "error=%s\n",
                       TLD.Buffer.Data, BufferQueue::getErrorString(EC));
            });
      });

  atomic_store(&ThresholdTicks,
               atomic_load_relaxed(&TicksPerSec) *
                   fdrFlags()->func_duration_threshold_us / 1000000,
               memory_order_release);
  // Arg1 handler should go in first to avoid concurrent code accidentally
  // falling back to arg0 when it should have ran arg1.
  __xray_set_handler_arg1(fdrLoggingHandleArg1);
  // Install the actual handleArg0 handler after initialising the buffers.
  __xray_set_handler(fdrLoggingHandleArg0);
  __xray_set_customevent_handler(fdrLoggingHandleCustomEvent);
  __xray_set_typedevent_handler(fdrLoggingHandleTypedEvent);

  // Install the buffer iterator implementation.
  __xray_log_set_buffer_iterator(fdrIterator);

  atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
               memory_order_release);

  if (Verbosity())
    Report("XRay FDR init successful.\n");
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

bool fdrLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      fdrLoggingInit,
      fdrLoggingFinalize,
      fdrLoggingHandleArg0,
      fdrLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-fdr", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      Verbosity()) {
    Report("Cannot register XRay FDR mode to 'xray-fdr'; error = %d\n",
           RegistrationResult);
    return false;
  }

  if (flags()->xray_fdr_log ||
      !internal_strcmp(flags()->xray_mode, "xray-fdr")) {
    auto SelectResult = __xray_log_select_mode("xray-fdr");
    if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
        Verbosity()) {
      Report("Cannot select XRay FDR mode as 'xray-fdr'; error = %d\n",
             SelectResult);
      return false;
    }
  }
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::fdrLogDynamicInitializer();