reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_sample.h"
#include <isl/vec.h>
#include <isl/mat.h>
#include <isl_seq.h>
#include "isl_equalities.h"
#include "isl_tab.h"
#include "isl_basis_reduction.h"
#include <isl_factorization.h>
#include <isl_point_private.h>
#include <isl_options_private.h>
#include <isl_vec_private.h>

#include <bset_from_bmap.c>
#include <set_to_map.c>

static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
{
	struct isl_vec *vec;

	vec = isl_vec_alloc(bset->ctx, 0);
	isl_basic_set_free(bset);
	return vec;
}

/* Construct a zero sample of the same dimension as bset.
 * As a special case, if bset is zero-dimensional, this
 * function creates a zero-dimensional sample point.
 */
static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
{
	unsigned dim;
	struct isl_vec *sample;

	dim = isl_basic_set_total_dim(bset);
	sample = isl_vec_alloc(bset->ctx, 1 + dim);
	if (sample) {
		isl_int_set_si(sample->el[0], 1);
		isl_seq_clr(sample->el + 1, dim);
	}
	isl_basic_set_free(bset);
	return sample;
}

static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
{
	int i;
	isl_int t;
	struct isl_vec *sample;

	bset = isl_basic_set_simplify(bset);
	if (!bset)
		return NULL;
	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);
	if (bset->n_eq == 0 && bset->n_ineq == 0)
		return zero_sample(bset);

	sample = isl_vec_alloc(bset->ctx, 2);
	if (!sample)
		goto error;
	if (!bset)
		return NULL;
	isl_int_set_si(sample->block.data[0], 1);

	if (bset->n_eq > 0) {
		isl_assert(bset->ctx, bset->n_eq == 1, goto error);
		isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
		if (isl_int_is_one(bset->eq[0][1]))
			isl_int_neg(sample->el[1], bset->eq[0][0]);
		else {
			isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
				   goto error);
			isl_int_set(sample->el[1], bset->eq[0][0]);
		}
		isl_basic_set_free(bset);
		return sample;
	}

	isl_int_init(t);
	if (isl_int_is_one(bset->ineq[0][1]))
		isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
	else
		isl_int_set(sample->block.data[1], bset->ineq[0][0]);
	for (i = 1; i < bset->n_ineq; ++i) {
		isl_seq_inner_product(sample->block.data,
					bset->ineq[i], 2, &t);
		if (isl_int_is_neg(t))
			break;
	}
	isl_int_clear(t);
	if (i < bset->n_ineq) {
		isl_vec_free(sample);
		return empty_sample(bset);
	}

	isl_basic_set_free(bset);
	return sample;
error:
	isl_basic_set_free(bset);
	isl_vec_free(sample);
	return NULL;
}

/* Find a sample integer point, if any, in bset, which is known
 * to have equalities.  If bset contains no integer points, then
 * return a zero-length vector.
 * We simply remove the known equalities, compute a sample
 * in the resulting bset, using the specified recurse function,
 * and then transform the sample back to the original space.
 */
static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
	__isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
{
	struct isl_mat *T;
	struct isl_vec *sample;

	if (!bset)
		return NULL;

	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
	sample = recurse(bset);
	if (!sample || sample->size == 0)
		isl_mat_free(T);
	else
		sample = isl_mat_vec_product(T, sample);
	return sample;
}

/* Return a matrix containing the equalities of the tableau
 * in constraint form.  The tableau is assumed to have
 * an associated bset that has been kept up-to-date.
 */
static struct isl_mat *tab_equalities(struct isl_tab *tab)
{
	int i, j;
	int n_eq;
	struct isl_mat *eq;
	struct isl_basic_set *bset;

	if (!tab)
		return NULL;

	bset = isl_tab_peek_bset(tab);
	isl_assert(tab->mat->ctx, bset, return NULL);

	n_eq = tab->n_var - tab->n_col + tab->n_dead;
	if (tab->empty || n_eq == 0)
		return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
	if (n_eq == tab->n_var)
		return isl_mat_identity(tab->mat->ctx, tab->n_var);

	eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
	if (!eq)
		return NULL;
	for (i = 0, j = 0; i < tab->n_con; ++i) {
		if (tab->con[i].is_row)
			continue;
		if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
			continue;
		if (i < bset->n_eq)
			isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
		else
			isl_seq_cpy(eq->row[j],
				    bset->ineq[i - bset->n_eq] + 1, tab->n_var);
		++j;
	}
	isl_assert(bset->ctx, j == n_eq, goto error);
	return eq;
error:
	isl_mat_free(eq);
	return NULL;
}

/* Compute and return an initial basis for the bounded tableau "tab".
 *
 * If the tableau is either full-dimensional or zero-dimensional,
 * the we simply return an identity matrix.
 * Otherwise, we construct a basis whose first directions correspond
 * to equalities.
 */
static struct isl_mat *initial_basis(struct isl_tab *tab)
{
	int n_eq;
	struct isl_mat *eq;
	struct isl_mat *Q;

	tab->n_unbounded = 0;
	tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
	if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
		return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);

	eq = tab_equalities(tab);
	eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
	if (!eq)
		return NULL;
	isl_mat_free(eq);

	Q = isl_mat_lin_to_aff(Q);
	return Q;
}

/* Compute the minimum of the current ("level") basis row over "tab"
 * and store the result in position "level" of "min".
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *min, int level)
{
	return isl_tab_min(tab, tab->basis->row[1 + level],
			    ctx->one, &min->el[level], NULL, 0);
}

/* Compute the maximum of the current ("level") basis row over "tab"
 * and store the result in position "level" of "max".
 *
 * This function assumes that at least one more row and at least
 * one more element in the constraint array are available in the tableau.
 */
static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *max, int level)
{
	enum isl_lp_result res;
	unsigned dim = tab->n_var;

	isl_seq_neg(tab->basis->row[1 + level] + 1,
		    tab->basis->row[1 + level] + 1, dim);
	res = isl_tab_min(tab, tab->basis->row[1 + level],
		    ctx->one, &max->el[level], NULL, 0);
	isl_seq_neg(tab->basis->row[1 + level] + 1,
		    tab->basis->row[1 + level] + 1, dim);
	isl_int_neg(max->el[level], max->el[level]);

	return res;
}

/* Perform a greedy search for an integer point in the set represented
 * by "tab", given that the minimal rational value (rounded up to the
 * nearest integer) at "level" is smaller than the maximal rational
 * value (rounded down to the nearest integer).
 *
 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
 * then we may have only found integer values for the bounded dimensions
 * and it is the responsibility of the caller to extend this solution
 * to the unbounded dimensions).
 * Return 0 if greedy search did not result in a solution.
 * Return -1 if some error occurred.
 *
 * We assign a value half-way between the minimum and the maximum
 * to the current dimension and check if the minimal value of the
 * next dimension is still smaller than (or equal) to the maximal value.
 * We continue this process until either
 * - the minimal value (rounded up) is greater than the maximal value
 *	(rounded down).  In this case, greedy search has failed.
 * - we have exhausted all bounded dimensions, meaning that we have
 *	found a solution.
 * - the sample value of the tableau is integral.
 * - some error has occurred.
 */
static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
	__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
{
	struct isl_tab_undo *snap;
	enum isl_lp_result res;

	snap = isl_tab_snap(tab);

	do {
		isl_int_add(tab->basis->row[1 + level][0],
			    min->el[level], max->el[level]);
		isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
			    tab->basis->row[1 + level][0], 2);
		isl_int_neg(tab->basis->row[1 + level][0],
			    tab->basis->row[1 + level][0]);
		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
			return -1;
		isl_int_set_si(tab->basis->row[1 + level][0], 0);

		if (++level >= tab->n_var - tab->n_unbounded)
			return 1;
		if (isl_tab_sample_is_integer(tab))
			return 1;

		res = compute_min(ctx, tab, min, level);
		if (res == isl_lp_error)
			return -1;
		if (res != isl_lp_ok)
			isl_die(ctx, isl_error_internal,
				"expecting bounded rational solution",
				return -1);
		res = compute_max(ctx, tab, max, level);
		if (res == isl_lp_error)
			return -1;
		if (res != isl_lp_ok)
			isl_die(ctx, isl_error_internal,
				"expecting bounded rational solution",
				return -1);
	} while (isl_int_le(min->el[level], max->el[level]));

	if (isl_tab_rollback(tab, snap) < 0)
		return -1;

	return 0;
}

/* Given a tableau representing a set, find and return
 * an integer point in the set, if there is any.
 *
 * We perform a depth first search
 * for an integer point, by scanning all possible values in the range
 * attained by a basis vector, where an initial basis may have been set
 * by the calling function.  Otherwise an initial basis that exploits
 * the equalities in the tableau is created.
 * tab->n_zero is currently ignored and is clobbered by this function.
 *
 * The tableau is allowed to have unbounded direction, but then
 * the calling function needs to set an initial basis, with the
 * unbounded directions last and with tab->n_unbounded set
 * to the number of unbounded directions.
 * Furthermore, the calling functions needs to add shifted copies
 * of all constraints involving unbounded directions to ensure
 * that any feasible rational value in these directions can be rounded
 * up to yield a feasible integer value.
 * In particular, let B define the given basis x' = B x
 * and let T be the inverse of B, i.e., X = T x'.
 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
 * or a T x' + c >= 0 in terms of the given basis.  Assume that
 * the bounded directions have an integer value, then we can safely
 * round up the values for the unbounded directions if we make sure
 * that x' not only satisfies the original constraint, but also
 * the constraint "a T x' + c + s >= 0" with s the sum of all
 * negative values in the last n_unbounded entries of "a T".
 * The calling function therefore needs to add the constraint
 * a x + c + s >= 0.  The current function then scans the first
 * directions for an integer value and once those have been found,
 * it can compute "T ceil(B x)" to yield an integer point in the set.
 * Note that during the search, the first rows of B may be changed
 * by a basis reduction, but the last n_unbounded rows of B remain
 * unaltered and are also not mixed into the first rows.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 *
 * At the start of each level, we first check if we can find a solution
 * using greedy search.  If not, we continue with the exhaustive search.
 *
 * The initial basis is the identity matrix.  If the range in some direction
 * contains more than one integer value, we perform basis reduction based
 * on the value of ctx->opt->gbr
 *	- ISL_GBR_NEVER:	never perform basis reduction
 *	- ISL_GBR_ONCE:		only perform basis reduction the first
 *				time such a range is encountered
 *	- ISL_GBR_ALWAYS:	always perform basis reduction when
 *				such a range is encountered
 *
 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
 * reduction computation to return early.  That is, as soon as it
 * finds a reasonable first direction.
 */ 
struct isl_vec *isl_tab_sample(struct isl_tab *tab)
{
	unsigned dim;
	unsigned gbr;
	struct isl_ctx *ctx;
	struct isl_vec *sample;
	struct isl_vec *min;
	struct isl_vec *max;
	enum isl_lp_result res;
	int level;
	int init;
	int reduced;
	struct isl_tab_undo **snap;

	if (!tab)
		return NULL;
	if (tab->empty)
		return isl_vec_alloc(tab->mat->ctx, 0);

	if (!tab->basis)
		tab->basis = initial_basis(tab);
	if (!tab->basis)
		return NULL;
	isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
		    return NULL);
	isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
		    return NULL);

	ctx = tab->mat->ctx;
	dim = tab->n_var;
	gbr = ctx->opt->gbr;

	if (tab->n_unbounded == tab->n_var) {
		sample = isl_tab_get_sample_value(tab);
		sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
		sample = isl_vec_ceil(sample);
		sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
							sample);
		return sample;
	}

	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		return NULL;

	min = isl_vec_alloc(ctx, dim);
	max = isl_vec_alloc(ctx, dim);
	snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);

	if (!min || !max || !snap)
		goto error;

	level = 0;
	init = 1;
	reduced = 0;

	while (level >= 0) {
		if (init) {
			int choice;

			res = compute_min(ctx, tab, min, level);
			if (res == isl_lp_error)
				goto error;
			if (res != isl_lp_ok)
				isl_die(ctx, isl_error_internal,
					"expecting bounded rational solution",
					goto error);
			if (isl_tab_sample_is_integer(tab))
				break;
			res = compute_max(ctx, tab, max, level);
			if (res == isl_lp_error)
				goto error;
			if (res != isl_lp_ok)
				isl_die(ctx, isl_error_internal,
					"expecting bounded rational solution",
					goto error);
			if (isl_tab_sample_is_integer(tab))
				break;
			choice = isl_int_lt(min->el[level], max->el[level]);
			if (choice) {
				int g;
				g = greedy_search(ctx, tab, min, max, level);
				if (g < 0)
					goto error;
				if (g)
					break;
			}
			if (!reduced && choice &&
			    ctx->opt->gbr != ISL_GBR_NEVER) {
				unsigned gbr_only_first;
				if (ctx->opt->gbr == ISL_GBR_ONCE)
					ctx->opt->gbr = ISL_GBR_NEVER;
				tab->n_zero = level;
				gbr_only_first = ctx->opt->gbr_only_first;
				ctx->opt->gbr_only_first =
					ctx->opt->gbr == ISL_GBR_ALWAYS;
				tab = isl_tab_compute_reduced_basis(tab);
				ctx->opt->gbr_only_first = gbr_only_first;
				if (!tab || !tab->basis)
					goto error;
				reduced = 1;
				continue;
			}
			reduced = 0;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);

		if (isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(tab->basis->row[1 + level][0], 0);
		if (level + tab->n_unbounded < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		break;
	}

	if (level >= 0) {
		sample = isl_tab_get_sample_value(tab);
		if (!sample)
			goto error;
		if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
			sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
						     sample);
			sample = isl_vec_ceil(sample);
			sample = isl_mat_vec_inverse_product(
					isl_mat_copy(tab->basis), sample);
		}
	} else
		sample = isl_vec_alloc(ctx, 0);

	ctx->opt->gbr = gbr;
	isl_vec_free(min);
	isl_vec_free(max);
	free(snap);
	return sample;
error:
	ctx->opt->gbr = gbr;
	isl_vec_free(min);
	isl_vec_free(max);
	free(snap);
	return NULL;
}

static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);

/* Compute a sample point of the given basic set, based on the given,
 * non-trivial factorization.
 */
static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
	__isl_take isl_factorizer *f)
{
	int i, n;
	isl_vec *sample = NULL;
	isl_ctx *ctx;
	unsigned nparam;
	unsigned nvar;

	ctx = isl_basic_set_get_ctx(bset);
	if (!ctx)
		goto error;

	nparam = isl_basic_set_dim(bset, isl_dim_param);
	nvar = isl_basic_set_dim(bset, isl_dim_set);

	sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset));
	if (!sample)
		goto error;
	isl_int_set_si(sample->el[0], 1);

	bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);

	for (i = 0, n = 0; i < f->n_group; ++i) {
		isl_basic_set *bset_i;
		isl_vec *sample_i;

		bset_i = isl_basic_set_copy(bset);
		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
			    nparam + n + f->len[i], nvar - n - f->len[i]);
		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
			    nparam, n);
		bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
			    n + f->len[i], nvar - n - f->len[i]);
		bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);

		sample_i = sample_bounded(bset_i);
		if (!sample_i)
			goto error;
		if (sample_i->size == 0) {
			isl_basic_set_free(bset);
			isl_factorizer_free(f);
			isl_vec_free(sample);
			return sample_i;
		}
		isl_seq_cpy(sample->el + 1 + nparam + n,
			    sample_i->el + 1, f->len[i]);
		isl_vec_free(sample_i);

		n += f->len[i];
	}

	f->morph = isl_morph_inverse(f->morph);
	sample = isl_morph_vec(isl_morph_copy(f->morph), sample);

	isl_basic_set_free(bset);
	isl_factorizer_free(f);
	return sample;
error:
	isl_basic_set_free(bset);
	isl_factorizer_free(f);
	isl_vec_free(sample);
	return NULL;
}

/* Given a basic set that is known to be bounded, find and return
 * an integer point in the basic set, if there is any.
 *
 * After handling some trivial cases, we construct a tableau
 * and then use isl_tab_sample to find a sample, passing it
 * the identity matrix as initial basis.
 */ 
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
{
	unsigned dim;
	struct isl_vec *sample;
	struct isl_tab *tab = NULL;
	isl_factorizer *f;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);

	dim = isl_basic_set_total_dim(bset);
	if (dim == 0)
		return zero_sample(bset);
	if (dim == 1)
		return interval_sample(bset);
	if (bset->n_eq > 0)
		return sample_eq(bset, sample_bounded);

	f = isl_basic_set_factorizer(bset);
	if (!f)
		goto error;
	if (f->n_group != 0)
		return factored_sample(bset, f);
	isl_factorizer_free(f);

	tab = isl_tab_from_basic_set(bset, 1);
	if (tab && tab->empty) {
		isl_tab_free(tab);
		ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
		sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
		isl_basic_set_free(bset);
		return sample;
	}

	if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
		if (isl_tab_detect_implicit_equalities(tab) < 0)
			goto error;

	sample = isl_tab_sample(tab);
	if (!sample)
		goto error;

	if (sample->size > 0) {
		isl_vec_free(bset->sample);
		bset->sample = isl_vec_copy(sample);
	}

	isl_basic_set_free(bset);
	isl_tab_free(tab);
	return sample;
error:
	isl_basic_set_free(bset);
	isl_tab_free(tab);
	return NULL;
}

/* Given a basic set "bset" and a value "sample" for the first coordinates
 * of bset, plug in these values and drop the corresponding coordinates.
 *
 * We do this by computing the preimage of the transformation
 *
 *	     [ 1 0 ]
 *	x =  [ s 0 ] x'
 *	     [ 0 I ]
 *
 * where [1 s] is the sample value and I is the identity matrix of the
 * appropriate dimension.
 */
static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
	__isl_take isl_vec *sample)
{
	int i;
	unsigned total;
	struct isl_mat *T;

	if (!bset || !sample)
		goto error;

	total = isl_basic_set_total_dim(bset);
	T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
	if (!T)
		goto error;

	for (i = 0; i < sample->size; ++i) {
		isl_int_set(T->row[i][0], sample->el[i]);
		isl_seq_clr(T->row[i] + 1, T->n_col - 1);
	}
	for (i = 0; i < T->n_col - 1; ++i) {
		isl_seq_clr(T->row[sample->size + i], T->n_col);
		isl_int_set_si(T->row[sample->size + i][1 + i], 1);
	}
	isl_vec_free(sample);

	bset = isl_basic_set_preimage(bset, T);
	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(sample);
	return NULL;
}

/* Given a basic set "bset", return any (possibly non-integer) point
 * in the basic set.
 */
static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
{
	struct isl_tab *tab;
	struct isl_vec *sample;

	if (!bset)
		return NULL;

	tab = isl_tab_from_basic_set(bset, 0);
	sample = isl_tab_get_sample_value(tab);
	isl_tab_free(tab);

	isl_basic_set_free(bset);

	return sample;
}

/* Given a linear cone "cone" and a rational point "vec",
 * construct a polyhedron with shifted copies of the constraints in "cone",
 * i.e., a polyhedron with "cone" as its recession cone, such that each
 * point x in this polyhedron is such that the unit box positioned at x
 * lies entirely inside the affine cone 'vec + cone'.
 * Any rational point in this polyhedron may therefore be rounded up
 * to yield an integer point that lies inside said affine cone.
 *
 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
 * point "vec" by v/d.
 * Let b_i = <a_i, v>.  Then the affine cone 'vec + cone' is given
 * by <a_i, x> - b/d >= 0.
 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
 * We prefer this polyhedron over the actual affine cone because it doesn't
 * require a scaling of the constraints.
 * If each of the vertices of the unit cube positioned at x lies inside
 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
 * We therefore impose that x' = x + \sum e_i, for any selection of unit
 * vectors lies inside the polyhedron, i.e.,
 *
 *	<a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
 *
 * The most stringent of these constraints is the one that selects
 * all negative a_i, so the polyhedron we are looking for has constraints
 *
 *	<a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
 *
 * Note that if cone were known to have only non-negative rays
 * (which can be accomplished by a unimodular transformation),
 * then we would only have to check the points x' = x + e_i
 * and we only have to add the smallest negative a_i (if any)
 * instead of the sum of all negative a_i.
 */
static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
	__isl_take isl_vec *vec)
{
	int i, j, k;
	unsigned total;

	struct isl_basic_set *shift = NULL;

	if (!cone || !vec)
		goto error;

	isl_assert(cone->ctx, cone->n_eq == 0, goto error);

	total = isl_basic_set_total_dim(cone);

	shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
					0, 0, cone->n_ineq);

	for (i = 0; i < cone->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(shift);
		if (k < 0)
			goto error;
		isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
		isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
				      &shift->ineq[k][0]);
		isl_int_cdiv_q(shift->ineq[k][0],
			       shift->ineq[k][0], vec->el[0]);
		isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
		for (j = 0; j < total; ++j) {
			if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
				continue;
			isl_int_add(shift->ineq[k][0],
				    shift->ineq[k][0], shift->ineq[k][1 + j]);
		}
	}

	isl_basic_set_free(cone);
	isl_vec_free(vec);

	return isl_basic_set_finalize(shift);
error:
	isl_basic_set_free(shift);
	isl_basic_set_free(cone);
	isl_vec_free(vec);
	return NULL;
}

/* Given a rational point vec in a (transformed) basic set,
 * such that cone is the recession cone of the original basic set,
 * "round up" the rational point to an integer point.
 *
 * We first check if the rational point just happens to be integer.
 * If not, we transform the cone in the same way as the basic set,
 * pick a point x in this cone shifted to the rational point such that
 * the whole unit cube at x is also inside this affine cone.
 * Then we simply round up the coordinates of x and return the
 * resulting integer point.
 */
static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
	__isl_take isl_basic_set *cone, __isl_take isl_mat *U)
{
	unsigned total;

	if (!vec || !cone || !U)
		goto error;

	isl_assert(vec->ctx, vec->size != 0, goto error);
	if (isl_int_is_one(vec->el[0])) {
		isl_mat_free(U);
		isl_basic_set_free(cone);
		return vec;
	}

	total = isl_basic_set_total_dim(cone);
	cone = isl_basic_set_preimage(cone, U);
	cone = isl_basic_set_remove_dims(cone, isl_dim_set,
					 0, total - (vec->size - 1));

	cone = shift_cone(cone, vec);

	vec = rational_sample(cone);
	vec = isl_vec_ceil(vec);
	return vec;
error:
	isl_mat_free(U);
	isl_vec_free(vec);
	isl_basic_set_free(cone);
	return NULL;
}

/* Concatenate two integer vectors, i.e., two vectors with denominator
 * (stored in element 0) equal to 1.
 */
static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
	__isl_take isl_vec *vec2)
{
	struct isl_vec *vec;

	if (!vec1 || !vec2)
		goto error;
	isl_assert(vec1->ctx, vec1->size > 0, goto error);
	isl_assert(vec2->ctx, vec2->size > 0, goto error);
	isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
	isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);

	vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
	if (!vec)
		goto error;

	isl_seq_cpy(vec->el, vec1->el, vec1->size);
	isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);

	isl_vec_free(vec1);
	isl_vec_free(vec2);

	return vec;
error:
	isl_vec_free(vec1);
	isl_vec_free(vec2);
	return NULL;
}

/* Give a basic set "bset" with recession cone "cone", compute and
 * return an integer point in bset, if any.
 *
 * If the recession cone is full-dimensional, then we know that
 * bset contains an infinite number of integer points and it is
 * fairly easy to pick one of them.
 * If the recession cone is not full-dimensional, then we first
 * transform bset such that the bounded directions appear as
 * the first dimensions of the transformed basic set.
 * We do this by using a unimodular transformation that transforms
 * the equalities in the recession cone to equalities on the first
 * dimensions.
 *
 * The transformed set is then projected onto its bounded dimensions.
 * Note that to compute this projection, we can simply drop all constraints
 * involving any of the unbounded dimensions since these constraints
 * cannot be combined to produce a constraint on the bounded dimensions.
 * To see this, assume that there is such a combination of constraints
 * that produces a constraint on the bounded dimensions.  This means
 * that some combination of the unbounded dimensions has both an upper
 * bound and a lower bound in terms of the bounded dimensions, but then
 * this combination would be a bounded direction too and would have been
 * transformed into a bounded dimensions.
 *
 * We then compute a sample value in the bounded dimensions.
 * If no such value can be found, then the original set did not contain
 * any integer points and we are done.
 * Otherwise, we plug in the value we found in the bounded dimensions,
 * project out these bounded dimensions and end up with a set with
 * a full-dimensional recession cone.
 * A sample point in this set is computed by "rounding up" any
 * rational point in the set.
 *
 * The sample points in the bounded and unbounded dimensions are
 * then combined into a single sample point and transformed back
 * to the original space.
 */
__isl_give isl_vec *isl_basic_set_sample_with_cone(
	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
{
	unsigned total;
	unsigned cone_dim;
	struct isl_mat *M, *U;
	struct isl_vec *sample;
	struct isl_vec *cone_sample;
	struct isl_ctx *ctx;
	struct isl_basic_set *bounded;

	if (!bset || !cone)
		goto error;

	ctx = isl_basic_set_get_ctx(bset);
	total = isl_basic_set_total_dim(cone);
	cone_dim = total - cone->n_eq;

	M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
	M = isl_mat_left_hermite(M, 0, &U, NULL);
	if (!M)
		goto error;
	isl_mat_free(M);

	U = isl_mat_lin_to_aff(U);
	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));

	bounded = isl_basic_set_copy(bset);
	bounded = isl_basic_set_drop_constraints_involving(bounded,
						   total - cone_dim, cone_dim);
	bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
	sample = sample_bounded(bounded);
	if (!sample || sample->size == 0) {
		isl_basic_set_free(bset);
		isl_basic_set_free(cone);
		isl_mat_free(U);
		return sample;
	}
	bset = plug_in(bset, isl_vec_copy(sample));
	cone_sample = rational_sample(bset);
	cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
	sample = vec_concat(sample, cone_sample);
	sample = isl_mat_vec_product(U, sample);
	return sample;
error:
	isl_basic_set_free(cone);
	isl_basic_set_free(bset);
	return NULL;
}

static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
{
	int i;

	isl_int_set_si(*s, 0);

	for (i = 0; i < v->size; ++i)
		if (isl_int_is_neg(v->el[i]))
			isl_int_add(*s, *s, v->el[i]);
}

/* Given a tableau "tab", a tableau "tab_cone" that corresponds
 * to the recession cone and the inverse of a new basis U = inv(B),
 * with the unbounded directions in B last,
 * add constraints to "tab" that ensure any rational value
 * in the unbounded directions can be rounded up to an integer value.
 *
 * The new basis is given by x' = B x, i.e., x = U x'.
 * For any rational value of the last tab->n_unbounded coordinates
 * in the update tableau, the value that is obtained by rounding
 * up this value should be contained in the original tableau.
 * For any constraint "a x + c >= 0", we therefore need to add
 * a constraint "a x + c + s >= 0", with s the sum of all negative
 * entries in the last elements of "a U".
 *
 * Since we are not interested in the first entries of any of the "a U",
 * we first drop the columns of U that correpond to bounded directions.
 */
static int tab_shift_cone(struct isl_tab *tab,
	struct isl_tab *tab_cone, struct isl_mat *U)
{
	int i;
	isl_int v;
	struct isl_basic_set *bset = NULL;

	if (tab && tab->n_unbounded == 0) {
		isl_mat_free(U);
		return 0;
	}
	isl_int_init(v);
	if (!tab || !tab_cone || !U)
		goto error;
	bset = isl_tab_peek_bset(tab_cone);
	U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
	for (i = 0; i < bset->n_ineq; ++i) {
		int ok;
		struct isl_vec *row = NULL;
		if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
			continue;
		row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
		if (!row)
			goto error;
		isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
		row = isl_vec_mat_product(row, isl_mat_copy(U));
		if (!row)
			goto error;
		vec_sum_of_neg(row, &v);
		isl_vec_free(row);
		if (isl_int_is_zero(v))
			continue;
		if (isl_tab_extend_cons(tab, 1) < 0)
			goto error;
		isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
		ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
		if (!ok)
			goto error;
	}

	isl_mat_free(U);
	isl_int_clear(v);
	return 0;
error:
	isl_mat_free(U);
	isl_int_clear(v);
	return -1;
}

/* Compute and return an initial basis for the possibly
 * unbounded tableau "tab".  "tab_cone" is a tableau
 * for the corresponding recession cone.
 * Additionally, add constraints to "tab" that ensure
 * that any rational value for the unbounded directions
 * can be rounded up to an integer value.
 *
 * If the tableau is bounded, i.e., if the recession cone
 * is zero-dimensional, then we just use inital_basis.
 * Otherwise, we construct a basis whose first directions
 * correspond to equalities, followed by bounded directions,
 * i.e., equalities in the recession cone.
 * The remaining directions are then unbounded.
 */
int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
	struct isl_tab *tab_cone)
{
	struct isl_mat *eq;
	struct isl_mat *cone_eq;
	struct isl_mat *U, *Q;

	if (!tab || !tab_cone)
		return -1;

	if (tab_cone->n_col == tab_cone->n_dead) {
		tab->basis = initial_basis(tab);
		return tab->basis ? 0 : -1;
	}

	eq = tab_equalities(tab);
	if (!eq)
		return -1;
	tab->n_zero = eq->n_row;
	cone_eq = tab_equalities(tab_cone);
	eq = isl_mat_concat(eq, cone_eq);
	if (!eq)
		return -1;
	tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
	eq = isl_mat_left_hermite(eq, 0, &U, &Q);
	if (!eq)
		return -1;
	isl_mat_free(eq);
	tab->basis = isl_mat_lin_to_aff(Q);
	if (tab_shift_cone(tab, tab_cone, U) < 0)
		return -1;
	if (!tab->basis)
		return -1;
	return 0;
}

/* Compute and return a sample point in bset using generalized basis
 * reduction.  We first check if the input set has a non-trivial
 * recession cone.  If so, we perform some extra preprocessing in
 * sample_with_cone.  Otherwise, we directly perform generalized basis
 * reduction.
 */
static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
{
	unsigned dim;
	struct isl_basic_set *cone;

	dim = isl_basic_set_total_dim(bset);

	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
	if (!cone)
		goto error;

	if (cone->n_eq < dim)
		return isl_basic_set_sample_with_cone(bset, cone);

	isl_basic_set_free(cone);
	return sample_bounded(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
	int bounded)
{
	struct isl_ctx *ctx;
	unsigned dim;
	if (!bset)
		return NULL;

	ctx = bset->ctx;
	if (isl_basic_set_plain_is_empty(bset))
		return empty_sample(bset);

	dim = isl_basic_set_n_dim(bset);
	isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
	isl_assert(ctx, bset->n_div == 0, goto error);

	if (bset->sample && bset->sample->size == 1 + dim) {
		int contains = isl_basic_set_contains(bset, bset->sample);
		if (contains < 0)
			goto error;
		if (contains) {
			struct isl_vec *sample = isl_vec_copy(bset->sample);
			isl_basic_set_free(bset);
			return sample;
		}
	}
	isl_vec_free(bset->sample);
	bset->sample = NULL;

	if (bset->n_eq > 0)
		return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
					       : isl_basic_set_sample_vec);
	if (dim == 0)
		return zero_sample(bset);
	if (dim == 1)
		return interval_sample(bset);

	return bounded ? sample_bounded(bset) : gbr_sample(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
{
	return basic_set_sample(bset, 0);
}

/* Compute an integer sample in "bset", where the caller guarantees
 * that "bset" is bounded.
 */
__isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
{
	return basic_set_sample(bset, 1);
}

__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
{
	int i;
	int k;
	struct isl_basic_set *bset = NULL;
	struct isl_ctx *ctx;
	unsigned dim;

	if (!vec)
		return NULL;
	ctx = vec->ctx;
	isl_assert(ctx, vec->size != 0, goto error);

	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
	if (!bset)
		goto error;
	dim = isl_basic_set_n_dim(bset);
	for (i = dim - 1; i >= 0; --i) {
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->eq[k], 1 + dim);
		isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
		isl_int_set(bset->eq[k][1 + i], vec->el[0]);
	}
	bset->sample = vec;

	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(vec);
	return NULL;
}

__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
{
	struct isl_basic_set *bset;
	struct isl_vec *sample_vec;

	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
	sample_vec = isl_basic_set_sample_vec(bset);
	if (!sample_vec)
		goto error;
	if (sample_vec->size == 0) {
		isl_vec_free(sample_vec);
		return isl_basic_map_set_to_empty(bmap);
	}
	isl_vec_free(bmap->sample);
	bmap->sample = isl_vec_copy(sample_vec);
	bset = isl_basic_set_from_vec(sample_vec);
	return isl_basic_map_overlying_set(bset, bmap);
error:
	isl_basic_map_free(bmap);
	return NULL;
}

__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
{
	return isl_basic_map_sample(bset);
}

__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
{
	int i;
	isl_basic_map *sample = NULL;

	if (!map)
		goto error;

	for (i = 0; i < map->n; ++i) {
		sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
		if (!sample)
			goto error;
		if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
			break;
		isl_basic_map_free(sample);
	}
	if (i == map->n)
		sample = isl_basic_map_empty(isl_map_get_space(map));
	isl_map_free(map);
	return sample;
error:
	isl_map_free(map);
	return NULL;
}

__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
{
	return bset_from_bmap(isl_map_sample(set_to_map(set)));
}

__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
{
	isl_vec *vec;
	isl_space *dim;

	dim = isl_basic_set_get_space(bset);
	bset = isl_basic_set_underlying_set(bset);
	vec = isl_basic_set_sample_vec(bset);

	return isl_point_alloc(dim, vec);
}

__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
{
	int i;
	isl_point *pnt;

	if (!set)
		return NULL;

	for (i = 0; i < set->n; ++i) {
		pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
		if (!pnt)
			goto error;
		if (!isl_point_is_void(pnt))
			break;
		isl_point_free(pnt);
	}
	if (i == set->n)
		pnt = isl_point_void(isl_set_get_space(set));

	isl_set_free(set);
	return pnt;
error:
	isl_set_free(set);
	return NULL;
}