reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
//===- DomTreeUpdaterTest.cpp - DomTreeUpdater unit tests -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <algorithm>

using namespace llvm;

static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
                                              StringRef ModuleStr) {
  SMDiagnostic Err;
  std::unique_ptr<Module> M = parseAssemblyString(ModuleStr, Err, Context);
  assert(M && "Bad LLVM IR?");
  return M;
}

TEST(DomTreeUpdater, EagerUpdateBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                          define i32 @f(i32 %i, i32 *%p) {
                          bb0:
                             store i32 %i, i32 *%p
                             switch i32 %i, label %bb1 [
                               i32 1, label %bb2
                               i32 2, label %bb3
                             ]
                          bb1:
                             ret i32 1
                          bb2:
                             ret i32 2
                          bb3:
                             ret i32 3
                          })";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DomTreeUpdater.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);

  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_TRUE(DTU.isEager());
  ASSERT_FALSE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  SwitchInst *SI = dyn_cast<SwitchInst>(BB0->getTerminator());
  ASSERT_NE(SI, nullptr) << "Couldn't get SwitchInst.";

  DTU.applyUpdatesPermissive(
      {{DominatorTree::Insert, BB0, BB0}, {DominatorTree::Delete, BB0, BB0}});
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
  BB3->removePredecessor(BB0);
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
    if (i->getCaseSuccessor() == BB3) {
      SI->removeCase(i);
      break;
    }
  }
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion.
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  DTU.applyUpdatesPermissive(
      {{DominatorTree::Insert, BB1, BB2}, {DominatorTree::Delete, BB0, BB1}});

  // DTU working with Eager UpdateStrategy does not need to flush.
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Test callback utils.
  ASSERT_EQ(BB3->getParent(), F);
  DTU.callbackDeleteBB(BB3,
                       [&F](BasicBlock *BB) { ASSERT_NE(BB->getParent(), F); });

  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Unnecessary flush() test
  DTU.flush();
  EXPECT_TRUE(DT.verify());
  EXPECT_TRUE(PDT.verify());

  // Remove all case branch to BB2 to test Eager recalculation.
  // Code section from llvm::ConstantFoldTerminator
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
    if (i->getCaseSuccessor() == BB2) {
      // Remove this entry.
      BB2->removePredecessor(BB0);
      i = SI->removeCase(i);
      e = SI->case_end();
    } else
      ++i;
  }
  ASSERT_FALSE(DT.verify());
  ASSERT_FALSE(PDT.verify());
  DTU.recalculate(*F);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
}

TEST(DomTreeUpdater, EagerUpdateReplaceEntryBB) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                            bb1:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_TRUE(DTU.isEager());
  ASSERT_FALSE(DTU.isLazy());
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;

  // Add a block as the new function entry BB. We also link it to BB0.
  BasicBlock *NewEntry =
      BasicBlock::Create(F->getContext(), "new_entry", F, BB0);
  BranchInst::Create(BB0, NewEntry);
  EXPECT_EQ(F->begin()->getName(), NewEntry->getName());
  EXPECT_TRUE(&F->getEntryBlock() == NewEntry);

  DTU.applyUpdates({{DominatorTree::Insert, NewEntry, BB0}});

  // Changing the Entry BB requires a full recalculation of DomTree.
  DTU.recalculate(*F);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // CFG Change: remove new_edge -> bb0 and redirect to new_edge -> bb1.
  EXPECT_EQ(NewEntry->getTerminator()->getNumSuccessors(), 1u);
  NewEntry->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, NewEntry);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU. At this point bb0 now has no predecessors but is still a
  // Child of F.
  DTU.applyUpdates({{DominatorTree::Delete, NewEntry, BB0},
                    {DominatorTree::Insert, NewEntry, BB1}});
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Now remove bb0 from F.
  ASSERT_FALSE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB0));
  DTU.deleteBB(BB0);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
}

TEST(DomTreeUpdater, LazyUpdateDTBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb2
                                i32 1, label %bb2
                                i32 2, label %bb3
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree *PDT = nullptr;
  DomTreeUpdater DTU(&DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;

  // Test discards of self-domination update.
  DTU.applyUpdatesPermissive({{DominatorTree::Insert, BB0, BB0}});
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3 and one duplicate edge bb0 -> bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Verify. Updates to DTU must be applied *after* all changes to the CFG
  // (including block deletion).
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_TRUE(DTU.getDomTree().verify());

  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion. Its parent is still F until all the pending updates
  // are applied to all trees held by the DomTreeUpdater (DomTree/PostDomTree).
  // We don't defer this action because it can cause problems for other
  // transforms or analysis as it's part of the actual CFG. We only defer
  // updates to the DominatorTrees. This code will crash if it is placed before
  // the BranchInst::Create() call above. After a deletion of a BasicBlock. Only
  // an explicit flush event can trigger the flushing of deleteBBs. Because some
  // passes using Lazy UpdateStrategy rely on this behavior.

  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  EXPECT_FALSE(DTU.hasPendingDeletedBB());
  DTU.deleteBB(BB3);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB3));
  EXPECT_TRUE(DTU.hasPendingDeletedBB());
  ASSERT_TRUE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_EQ(BB3->getParent(), F);
  DTU.recalculate(*F);
  EXPECT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateDTInheritedPreds) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 2, label %bb2
                                i32 3, label %bb3
                              ]
                            bb1:
                              br label %bb3
                            bb2:
                              br label %bb3
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree *PDT = nullptr;
  DomTreeUpdater DTU(&DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;

  // There are several CFG locations where we have:
  //
  //   pred1..predN
  //    |        |
  //    +> curr <+    converted into:   pred1..predN curr
  //        |                            |        |
  //        v                            +> succ <+
  //       succ
  //
  // There is a specific shape of this we have to be careful of:
  //
  //   pred1..predN
  //   ||        |
  //   |+> curr <+    converted into:   pred1..predN curr
  //   |    |                            |        |
  //   |    v                            +> succ <+
  //   +-> succ
  //
  // While the final CFG form is functionally identical the updates to
  // DTU are not. In the first case we must have
  // DTU.applyUpdates({{DominatorTree::Insert, Pred1, Succ}}) while in
  // the latter case we must *NOT* have
  // DTU.applyUpdates({{DominatorTree::Insert, Pred1, Succ}}).

  // CFG Change: bb0 now only has bb0 -> bb1 and bb0 -> bb3. We are preparing to
  // remove bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB3, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Test callback utils.
  std::vector<BasicBlock *> BasicBlocks;
  BasicBlocks.push_back(BB1);
  BasicBlocks.push_back(BB2);
  auto Eraser = [&](BasicBlock *BB) {
    BasicBlocks.erase(
        std::remove_if(BasicBlocks.begin(), BasicBlocks.end(),
                       [&](const BasicBlock *i) { return i == BB; }),
        BasicBlocks.end());
  };
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(2));
  // Remove bb2 from F. This has to happen before the call to
  // applyUpdates() for DTU to detect there is no longer an edge between
  // bb2 -> bb3. The deleteBB() method converts bb2's TI into "unreachable".
  ASSERT_FALSE(isa<UnreachableInst>(BB2->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB2));
  DTU.callbackDeleteBB(BB2, Eraser);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB2));
  ASSERT_TRUE(isa<UnreachableInst>(BB2->getTerminator()));
  EXPECT_EQ(BB2->getParent(), F);

  // Queue up the DTU updates.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB2});
  Updates.push_back({DominatorTree::Delete, BB2, BB3});

  // Handle the specific shape case next.
  // CFG Change: bb0 now only branches to bb3. We are preparing to remove bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB3, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Remove bb1 from F. This has to happen before the call to
  // applyUpdates() for DTU to detect there is no longer an edge between
  // bb1 -> bb3. The deleteBB() method converts bb1's TI into "unreachable".
  ASSERT_FALSE(isa<UnreachableInst>(BB1->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB1));
  DTU.callbackDeleteBB(BB1, Eraser);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB1));
  ASSERT_TRUE(isa<UnreachableInst>(BB1->getTerminator()));
  EXPECT_EQ(BB1->getParent(), F);

  // Update the DTU. In this case we don't submit {DominatorTree::Insert, BB0,
  // BB3} because the edge previously existed at the start of this test when DT
  // was first created.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});
  Updates.push_back({DominatorTree::Delete, BB1, BB3});

  // Verify everything.
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(2));
  DTU.flush();
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(0));
  ASSERT_TRUE(DT.verify());
}

TEST(DomTreeUpdater, LazyUpdateBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb2
                                i32 1, label %bb2
                                i32 2, label %bb3
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(&DT, &PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  // Test discards of self-domination update.
  DTU.applyUpdates({{DominatorTree::Delete, BB0, BB0}});

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Unnecessary Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Unnecessary Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3 and one duplicate edge bb0 -> bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion. Its parent is still F until DTU.flushDomTree is
  // called. We don't defer this action because it can cause problems for other
  // transforms or analysis as it's part of the actual CFG. We only defer
  // updates to the DominatorTree. This code will crash if it is placed before
  // the BranchInst::Create() call above.
  bool CallbackFlag = false;
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.callbackDeleteBB(BB3, [&](BasicBlock *) { CallbackFlag = true; });
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB3));
  ASSERT_TRUE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_EQ(BB3->getParent(), F);

  // Verify. Updates to DTU must be applied *after* all changes to the CFG
  // (including block deletion).
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.hasPendingUpdates());
  ASSERT_TRUE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());
  ASSERT_FALSE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
  ASSERT_EQ(CallbackFlag, true);
}

TEST(DomTreeUpdater, LazyUpdateReplaceEntryBB) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                            bb1:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;

  // Add a block as the new function entry BB. We also link it to BB0.
  BasicBlock *NewEntry =
      BasicBlock::Create(F->getContext(), "new_entry", F, BB0);
  BranchInst::Create(BB0, NewEntry);
  EXPECT_EQ(F->begin()->getName(), NewEntry->getName());
  EXPECT_TRUE(&F->getEntryBlock() == NewEntry);

  // Insert the new edge between new_entry -> bb0. Without this the
  // recalculate() call below will not actually recalculate the DT as there
  // are no changes pending and no blocks deleted.
  DTU.applyUpdates({{DominatorTree::Insert, NewEntry, BB0}});

  // Changing the Entry BB requires a full recalculation.
  DTU.recalculate(*F);
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  // CFG Change: remove new_edge -> bb0 and redirect to new_edge -> bb1.
  EXPECT_EQ(NewEntry->getTerminator()->getNumSuccessors(), 1u);
  NewEntry->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, NewEntry);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU. At this point bb0 now has no predecessors but is still a
  // Child of F.
  DTU.applyUpdates({{DominatorTree::Delete, NewEntry, BB0},
                    {DominatorTree::Insert, NewEntry, BB1}});
  DTU.flush();
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Now remove bb0 from F.
  ASSERT_FALSE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB0));
  DTU.deleteBB(BB0);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB0));
  ASSERT_TRUE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_EQ(BB0->getParent(), F);

  // Perform a full recalculation of the DTU. It is not necessary here but we
  // do this to test the case when there are no pending DT updates but there are
  // pending deleted BBs.
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  DTU.recalculate(*F);
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateStepTest) {
  // This test focus on testing a DTU holding both trees applying multiple
  // updates and DT/PDT not flushed together.
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb1
                                i32 1, label %bb2
                                i32 2, label %bb3
                                i32 3, label %bb1
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DomTreeUpdater.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);

  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  SwitchInst *SI = dyn_cast<SwitchInst>(BB0->getTerminator());
  ASSERT_NE(SI, nullptr) << "Couldn't get SwitchInst.";

  // Delete edge bb0 -> bb3.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(1);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // CFG Change: remove edge bb0 -> bb3.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 5u);
  BB3->removePredecessor(BB0);
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
    if (i->getCaseIndex() == 2) {
      SI->removeCase(i);
      break;
    }
  }
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion.
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.applyUpdates(Updates);

  // Only flush DomTree.
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());

  ASSERT_EQ(BB3->getParent(), F);
  DTU.deleteBB(BB3);

  Updates.clear();

  // Remove all case branch to BB2 to test Eager recalculation.
  // Code section from llvm::ConstantFoldTerminator
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
    if (i->getCaseSuccessor() == BB2) {
      // Remove this entry.
      BB2->removePredecessor(BB0);
      i = SI->removeCase(i);
      e = SI->case_end();
      Updates.push_back({DominatorTree::Delete, BB0, BB2});
    } else
      ++i;
  }

  DTU.applyUpdatesPermissive(Updates);
  // flush PostDomTree
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_TRUE(DTU.hasPendingDomTreeUpdates());
  // flush both trees
  DTU.flush();
  ASSERT_TRUE(DT.verify());
}

TEST(DomTreeUpdater, NoTreeTest) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              ret i32 0
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DomTreeUpdater DTU(nullptr, nullptr, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_FALSE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  // Test whether PendingDeletedBB is flushed after the recalculation.
  DTU.deleteBB(BB0);
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  DTU.recalculate(*F);
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateDeduplicationTest) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                           bb1:
                              ret i32 1
                           bb2:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  DomTreeUpdater DTU(&DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;

  // CFG Change: remove bb0 -> bb1 and add back bb0 -> bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU and simulate duplicates.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1}});

  // The above operations result in a no-op.
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Update the DTU. Simulate an invalid update.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1}});
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // CFG Change: remove bb0 -> bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  BB0->getTerminator()->eraseFromParent();

  // Update the DTU and simulate invalid updates.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1}});
  ASSERT_TRUE(DTU.hasPendingUpdates());

  // CFG Change: add bb0 -> bb2.
  BranchInst::Create(BB2, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  DTU.applyUpdates({{DominatorTree::Insert, BB0, BB2}});
  ASSERT_TRUE(DTU.getDomTree().verify());
}