reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
//===- StackColoring.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the stack-coloring optimization that looks for
// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
// which represent the possible lifetime of stack slots. It attempts to
// merge disjoint stack slots and reduce the used stack space.
// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
//
// TODO: In the future we plan to improve stack coloring in the following ways:
// 1. Allow merging multiple small slots into a single larger slot at different
//    offsets.
// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
//    spill slots.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "stack-coloring"

static cl::opt<bool>
DisableColoring("no-stack-coloring",
        cl::init(false), cl::Hidden,
        cl::desc("Disable stack coloring"));

/// The user may write code that uses allocas outside of the declared lifetime
/// zone. This can happen when the user returns a reference to a local
/// data-structure. We can detect these cases and decide not to optimize the
/// code. If this flag is enabled, we try to save the user. This option
/// is treated as overriding LifetimeStartOnFirstUse below.
static cl::opt<bool>
ProtectFromEscapedAllocas("protect-from-escaped-allocas",
                          cl::init(false), cl::Hidden,
                          cl::desc("Do not optimize lifetime zones that "
                                   "are broken"));

/// Enable enhanced dataflow scheme for lifetime analysis (treat first
/// use of stack slot as start of slot lifetime, as opposed to looking
/// for LIFETIME_START marker). See "Implementation notes" below for
/// more info.
static cl::opt<bool>
LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
        cl::init(true), cl::Hidden,
        cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));


STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");

//===----------------------------------------------------------------------===//
//                           StackColoring Pass
//===----------------------------------------------------------------------===//
//
// Stack Coloring reduces stack usage by merging stack slots when they
// can't be used together. For example, consider the following C program:
//
//     void bar(char *, int);
//     void foo(bool var) {
//         A: {
//             char z[4096];
//             bar(z, 0);
//         }
//
//         char *p;
//         char x[4096];
//         char y[4096];
//         if (var) {
//             p = x;
//         } else {
//             bar(y, 1);
//             p = y + 1024;
//         }
//     B:
//         bar(p, 2);
//     }
//
// Naively-compiled, this program would use 12k of stack space. However, the
// stack slot corresponding to `z` is always destroyed before either of the
// stack slots for `x` or `y` are used, and then `x` is only used if `var`
// is true, while `y` is only used if `var` is false. So in no time are 2
// of the stack slots used together, and therefore we can merge them,
// compiling the function using only a single 4k alloca:
//
//     void foo(bool var) { // equivalent
//         char x[4096];
//         char *p;
//         bar(x, 0);
//         if (var) {
//             p = x;
//         } else {
//             bar(x, 1);
//             p = x + 1024;
//         }
//         bar(p, 2);
//     }
//
// This is an important optimization if we want stack space to be under
// control in large functions, both open-coded ones and ones created by
// inlining.
//
// Implementation Notes:
// ---------------------
//
// An important part of the above reasoning is that `z` can't be accessed
// while the latter 2 calls to `bar` are running. This is justified because
// `z`'s lifetime is over after we exit from block `A:`, so any further
// accesses to it would be UB. The way we represent this information
// in LLVM is by having frontends delimit blocks with `lifetime.start`
// and `lifetime.end` intrinsics.
//
// The effect of these intrinsics seems to be as follows (maybe I should
// specify this in the reference?):
//
//   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
//   lifetime intrinsic refers to that stack slot, in which case
//   it is marked as *in-scope*.
//   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
//   the stack slot is overwritten with `undef`.
//   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
//   L4) on function exit, all stack slots are marked as *out-of-scope*.
//   L5) `lifetime.end` is a no-op when called on a slot that is already
//   *out-of-scope*.
//   L6) memory accesses to *out-of-scope* stack slots are UB.
//   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
//   are invalidated, unless the slot is "degenerate". This is used to
//   justify not marking slots as in-use until the pointer to them is
//   used, but feels a bit hacky in the presence of things like LICM. See
//   the "Degenerate Slots" section for more details.
//
// Now, let's ground stack coloring on these rules. We'll define a slot
// as *in-use* at a (dynamic) point in execution if it either can be
// written to at that point, or if it has a live and non-undef content
// at that point.
//
// Obviously, slots that are never *in-use* together can be merged, and
// in our example `foo`, the slots for `x`, `y` and `z` are never
// in-use together (of course, sometimes slots that *are* in-use together
// might still be mergable, but we don't care about that here).
//
// In this implementation, we successively merge pairs of slots that are
// not *in-use* together. We could be smarter - for example, we could merge
// a single large slot with 2 small slots, or we could construct the
// interference graph and run a "smart" graph coloring algorithm, but with
// that aside, how do we find out whether a pair of slots might be *in-use*
// together?
//
// From our rules, we see that *out-of-scope* slots are never *in-use*,
// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
// until their address is taken. Therefore, we can approximate slot activity
// using dataflow.
//
// A subtle point: naively, we might try to figure out which pairs of
// stack-slots interfere by propagating `S in-use` through the CFG for every
// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
// which they are both *in-use*.
//
// That is sound, but overly conservative in some cases: in our (artificial)
// example `foo`, either `x` or `y` might be in use at the label `B:`, but
// as `x` is only in use if we came in from the `var` edge and `y` only
// if we came from the `!var` edge, they still can't be in use together.
// See PR32488 for an important real-life case.
//
// If we wanted to find all points of interference precisely, we could
// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
// would be precise, but requires propagating `O(n^2)` dataflow facts.
//
// However, we aren't interested in the *set* of points of interference
// between 2 stack slots, only *whether* there *is* such a point. So we
// can rely on a little trick: for `S` and `T` to be in-use together,
// one of them needs to become in-use while the other is in-use (or
// they might both become in use simultaneously). We can check this
// by also keeping track of the points at which a stack slot might *start*
// being in-use.
//
// Exact first use:
// ----------------
//
// Consider the following motivating example:
//
//     int foo() {
//       char b1[1024], b2[1024];
//       if (...) {
//         char b3[1024];
//         <uses of b1, b3>;
//         return x;
//       } else {
//         char b4[1024], b5[1024];
//         <uses of b2, b4, b5>;
//         return y;
//       }
//     }
//
// In the code above, "b3" and "b4" are declared in distinct lexical
// scopes, meaning that it is easy to prove that they can share the
// same stack slot. Variables "b1" and "b2" are declared in the same
// scope, meaning that from a lexical point of view, their lifetimes
// overlap. From a control flow pointer of view, however, the two
// variables are accessed in disjoint regions of the CFG, thus it
// should be possible for them to share the same stack slot. An ideal
// stack allocation for the function above would look like:
//
//     slot 0: b1, b2
//     slot 1: b3, b4
//     slot 2: b5
//
// Achieving this allocation is tricky, however, due to the way
// lifetime markers are inserted. Here is a simplified view of the
// control flow graph for the code above:
//
//                +------  block 0 -------+
//               0| LIFETIME_START b1, b2 |
//               1| <test 'if' condition> |
//                +-----------------------+
//                   ./              \.
//   +------  block 1 -------+   +------  block 2 -------+
//  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
//  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
//  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
//   +-----------------------+   +-----------------------+
//                   \.              /.
//                +------  block 3 -------+
//               8| <cleanupcode>         |
//               9| LIFETIME_END b1, b2   |
//              10| return                |
//                +-----------------------+
//
// If we create live intervals for the variables above strictly based
// on the lifetime markers, we'll get the set of intervals on the
// left. If we ignore the lifetime start markers and instead treat a
// variable's lifetime as beginning with the first reference to the
// var, then we get the intervals on the right.
//
//            LIFETIME_START      First Use
//     b1:    [0,9]               [3,4] [8,9]
//     b2:    [0,9]               [6,9]
//     b3:    [2,4]               [3,4]
//     b4:    [5,7]               [6,7]
//     b5:    [5,7]               [6,7]
//
// For the intervals on the left, the best we can do is overlap two
// variables (b3 and b4, for example); this gives us a stack size of
// 4*1024 bytes, not ideal. When treating first-use as the start of a
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
// byte stack (better).
//
// Degenerate Slots:
// -----------------
//
// Relying entirely on first-use of stack slots is problematic,
// however, due to the fact that optimizations can sometimes migrate
// uses of a variable outside of its lifetime start/end region. Here
// is an example:
//
//     int bar() {
//       char b1[1024], b2[1024];
//       if (...) {
//         <uses of b2>
//         return y;
//       } else {
//         <uses of b1>
//         while (...) {
//           char b3[1024];
//           <uses of b3>
//         }
//       }
//     }
//
// Before optimization, the control flow graph for the code above
// might look like the following:
//
//                +------  block 0 -------+
//               0| LIFETIME_START b1, b2 |
//               1| <test 'if' condition> |
//                +-----------------------+
//                   ./              \.
//   +------  block 1 -------+    +------- block 2 -------+
//  2| <uses of b2>          |   3| <uses of b1>          |
//   +-----------------------+    +-----------------------+
//              |                            |
//              |                 +------- block 3 -------+ <-\.
//              |                4| <while condition>     |    |
//              |                 +-----------------------+    |
//              |               /          |                   |
//              |              /  +------- block 4 -------+
//              \             /  5| LIFETIME_START b3     |    |
//               \           /   6| <uses of b3>          |    |
//                \         /    7| LIFETIME_END b3       |    |
//                 \        |    +------------------------+    |
//                  \       |                 \                /
//                +------  block 5 -----+      \---------------
//               8| <cleanupcode>       |
//               9| LIFETIME_END b1, b2 |
//              10| return              |
//                +---------------------+
//
// During optimization, however, it can happen that an instruction
// computing an address in "b3" (for example, a loop-invariant GEP) is
// hoisted up out of the loop from block 4 to block 2.  [Note that
// this is not an actual load from the stack, only an instruction that
// computes the address to be loaded]. If this happens, there is now a
// path leading from the first use of b3 to the return instruction
// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
// now larger than if we were computing live intervals strictly based
// on lifetime markers. In the example above, this lengthened lifetime
// would mean that it would appear illegal to overlap b3 with b2.
//
// To deal with this such cases, the code in ::collectMarkers() below
// tries to identify "degenerate" slots -- those slots where on a single
// forward pass through the CFG we encounter a first reference to slot
// K before we hit the slot K lifetime start marker. For such slots,
// we fall back on using the lifetime start marker as the beginning of
// the variable's lifetime.  NB: with this implementation, slots can
// appear degenerate in cases where there is unstructured control flow:
//
//    if (q) goto mid;
//    if (x > 9) {
//         int b[100];
//         memcpy(&b[0], ...);
//    mid: b[k] = ...;
//         abc(&b);
//    }
//
// If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
// before visiting the memcpy block (which will contain the lifetime start
// for "b" then it will appear that 'b' has a degenerate lifetime.
//

namespace {

/// StackColoring - A machine pass for merging disjoint stack allocations,
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
class StackColoring : public MachineFunctionPass {
  MachineFrameInfo *MFI;
  MachineFunction *MF;

  /// A class representing liveness information for a single basic block.
  /// Each bit in the BitVector represents the liveness property
  /// for a different stack slot.
  struct BlockLifetimeInfo {
    /// Which slots BEGINs in each basic block.
    BitVector Begin;

    /// Which slots ENDs in each basic block.
    BitVector End;

    /// Which slots are marked as LIVE_IN, coming into each basic block.
    BitVector LiveIn;

    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
    BitVector LiveOut;
  };

  /// Maps active slots (per bit) for each basic block.
  using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
  LivenessMap BlockLiveness;

  /// Maps serial numbers to basic blocks.
  DenseMap<const MachineBasicBlock *, int> BasicBlocks;

  /// Maps basic blocks to a serial number.
  SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;

  /// Maps slots to their use interval. Outside of this interval, slots
  /// values are either dead or `undef` and they will not be written to.
  SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;

  /// Maps slots to the points where they can become in-use.
  SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;

  /// VNInfo is used for the construction of LiveIntervals.
  VNInfo::Allocator VNInfoAllocator;

  /// SlotIndex analysis object.
  SlotIndexes *Indexes;

  /// The list of lifetime markers found. These markers are to be removed
  /// once the coloring is done.
  SmallVector<MachineInstr*, 8> Markers;

  /// Record the FI slots for which we have seen some sort of
  /// lifetime marker (either start or end).
  BitVector InterestingSlots;

  /// FI slots that need to be handled conservatively (for these
  /// slots lifetime-start-on-first-use is disabled).
  BitVector ConservativeSlots;

  /// Number of iterations taken during data flow analysis.
  unsigned NumIterations;

public:
  static char ID;

  StackColoring() : MachineFunctionPass(ID) {
    initializeStackColoringPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &Func) override;

private:
  /// Used in collectMarkers
  using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;

  /// Debug.
  void dump() const;
  void dumpIntervals() const;
  void dumpBB(MachineBasicBlock *MBB) const;
  void dumpBV(const char *tag, const BitVector &BV) const;

  /// Removes all of the lifetime marker instructions from the function.
  /// \returns true if any markers were removed.
  bool removeAllMarkers();

  /// Scan the machine function and find all of the lifetime markers.
  /// Record the findings in the BEGIN and END vectors.
  /// \returns the number of markers found.
  unsigned collectMarkers(unsigned NumSlot);

  /// Perform the dataflow calculation and calculate the lifetime for each of
  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
  /// in and out blocks.
  void calculateLocalLiveness();

  /// Returns TRUE if we're using the first-use-begins-lifetime method for
  /// this slot (if FALSE, then the start marker is treated as start of lifetime).
  bool applyFirstUse(int Slot) {
    if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
      return false;
    if (ConservativeSlots.test(Slot))
      return false;
    return true;
  }

  /// Examines the specified instruction and returns TRUE if the instruction
  /// represents the start or end of an interesting lifetime. The slot or slots
  /// starting or ending are added to the vector "slots" and "isStart" is set
  /// accordingly.
  /// \returns True if inst contains a lifetime start or end
  bool isLifetimeStartOrEnd(const MachineInstr &MI,
                            SmallVector<int, 4> &slots,
                            bool &isStart);

  /// Construct the LiveIntervals for the slots.
  void calculateLiveIntervals(unsigned NumSlots);

  /// Go over the machine function and change instructions which use stack
  /// slots to use the joint slots.
  void remapInstructions(DenseMap<int, int> &SlotRemap);

  /// The input program may contain instructions which are not inside lifetime
  /// markers. This can happen due to a bug in the compiler or due to a bug in
  /// user code (for example, returning a reference to a local variable).
  /// This procedure checks all of the instructions in the function and
  /// invalidates lifetime ranges which do not contain all of the instructions
  /// which access that frame slot.
  void removeInvalidSlotRanges();

  /// Map entries which point to other entries to their destination.
  ///   A->B->C becomes A->C.
  void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
};

} // end anonymous namespace

char StackColoring::ID = 0;

char &llvm::StackColoringID = StackColoring::ID;

INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
                      "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
                    "Merge disjoint stack slots", false, false)

void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<SlotIndexes>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
                                            const BitVector &BV) const {
  dbgs() << tag << " : { ";
  for (unsigned I = 0, E = BV.size(); I != E; ++I)
    dbgs() << BV.test(I) << " ";
  dbgs() << "}\n";
}

LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
  LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
  assert(BI != BlockLiveness.end() && "Block not found");
  const BlockLifetimeInfo &BlockInfo = BI->second;

  dumpBV("BEGIN", BlockInfo.Begin);
  dumpBV("END", BlockInfo.End);
  dumpBV("LIVE_IN", BlockInfo.LiveIn);
  dumpBV("LIVE_OUT", BlockInfo.LiveOut);
}

LLVM_DUMP_METHOD void StackColoring::dump() const {
  for (MachineBasicBlock *MBB : depth_first(MF)) {
    dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
           << MBB->getName() << "]\n";
    dumpBB(MBB);
  }
}

LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
  for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
    dbgs() << "Interval[" << I << "]:\n";
    Intervals[I]->dump();
  }
}
#endif

static inline int getStartOrEndSlot(const MachineInstr &MI)
{
  assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
          MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
         "Expected LIFETIME_START or LIFETIME_END op");
  const MachineOperand &MO = MI.getOperand(0);
  int Slot = MO.getIndex();
  if (Slot >= 0)
    return Slot;
  return -1;
}

// At the moment the only way to end a variable lifetime is with
// a VARIABLE_LIFETIME op (which can't contain a start). If things
// change and the IR allows for a single inst that both begins
// and ends lifetime(s), this interface will need to be reworked.
bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
                                         SmallVector<int, 4> &slots,
                                         bool &isStart) {
  if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
      MI.getOpcode() == TargetOpcode::LIFETIME_END) {
    int Slot = getStartOrEndSlot(MI);
    if (Slot < 0)
      return false;
    if (!InterestingSlots.test(Slot))
      return false;
    slots.push_back(Slot);
    if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
      isStart = false;
      return true;
    }
    if (!applyFirstUse(Slot)) {
      isStart = true;
      return true;
    }
  } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
    if (!MI.isDebugInstr()) {
      bool found = false;
      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isFI())
          continue;
        int Slot = MO.getIndex();
        if (Slot<0)
          continue;
        if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
          slots.push_back(Slot);
          found = true;
        }
      }
      if (found) {
        isStart = true;
        return true;
      }
    }
  }
  return false;
}

unsigned StackColoring::collectMarkers(unsigned NumSlot) {
  unsigned MarkersFound = 0;
  BlockBitVecMap SeenStartMap;
  InterestingSlots.clear();
  InterestingSlots.resize(NumSlot);
  ConservativeSlots.clear();
  ConservativeSlots.resize(NumSlot);

  // number of start and end lifetime ops for each slot
  SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
  SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);

  // Step 1: collect markers and populate the "InterestingSlots"
  // and "ConservativeSlots" sets.
  for (MachineBasicBlock *MBB : depth_first(MF)) {
    // Compute the set of slots for which we've seen a START marker but have
    // not yet seen an END marker at this point in the walk (e.g. on entry
    // to this bb).
    BitVector BetweenStartEnd;
    BetweenStartEnd.resize(NumSlot);
    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
             PE = MBB->pred_end(); PI != PE; ++PI) {
      BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
      if (I != SeenStartMap.end()) {
        BetweenStartEnd |= I->second;
      }
    }

    // Walk the instructions in the block to look for start/end ops.
    for (MachineInstr &MI : *MBB) {
      if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
          MI.getOpcode() == TargetOpcode::LIFETIME_END) {
        int Slot = getStartOrEndSlot(MI);
        if (Slot < 0)
          continue;
        InterestingSlots.set(Slot);
        if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
          BetweenStartEnd.set(Slot);
          NumStartLifetimes[Slot] += 1;
        } else {
          BetweenStartEnd.reset(Slot);
          NumEndLifetimes[Slot] += 1;
        }
        const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
        if (Allocation) {
          LLVM_DEBUG(dbgs() << "Found a lifetime ");
          LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
                                    ? "start"
                                    : "end"));
          LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
          LLVM_DEBUG(dbgs()
                     << " with allocation: " << Allocation->getName() << "\n");
        }
        Markers.push_back(&MI);
        MarkersFound += 1;
      } else {
        for (const MachineOperand &MO : MI.operands()) {
          if (!MO.isFI())
            continue;
          int Slot = MO.getIndex();
          if (Slot < 0)
            continue;
          if (! BetweenStartEnd.test(Slot)) {
            ConservativeSlots.set(Slot);
          }
        }
      }
    }
    BitVector &SeenStart = SeenStartMap[MBB];
    SeenStart |= BetweenStartEnd;
  }
  if (!MarkersFound) {
    return 0;
  }

  // PR27903: slots with multiple start or end lifetime ops are not
  // safe to enable for "lifetime-start-on-first-use".
  for (unsigned slot = 0; slot < NumSlot; ++slot)
    if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
      ConservativeSlots.set(slot);
  LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));

  // Step 2: compute begin/end sets for each block

  // NOTE: We use a depth-first iteration to ensure that we obtain a
  // deterministic numbering.
  for (MachineBasicBlock *MBB : depth_first(MF)) {
    // Assign a serial number to this basic block.
    BasicBlocks[MBB] = BasicBlockNumbering.size();
    BasicBlockNumbering.push_back(MBB);

    // Keep a reference to avoid repeated lookups.
    BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];

    BlockInfo.Begin.resize(NumSlot);
    BlockInfo.End.resize(NumSlot);

    SmallVector<int, 4> slots;
    for (MachineInstr &MI : *MBB) {
      bool isStart = false;
      slots.clear();
      if (isLifetimeStartOrEnd(MI, slots, isStart)) {
        if (!isStart) {
          assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
          int Slot = slots[0];
          if (BlockInfo.Begin.test(Slot)) {
            BlockInfo.Begin.reset(Slot);
          }
          BlockInfo.End.set(Slot);
        } else {
          for (auto Slot : slots) {
            LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
            LLVM_DEBUG(dbgs()
                       << " at " << printMBBReference(*MBB) << " index ");
            LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
            const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
            if (Allocation) {
              LLVM_DEBUG(dbgs()
                         << " with allocation: " << Allocation->getName());
            }
            LLVM_DEBUG(dbgs() << "\n");
            if (BlockInfo.End.test(Slot)) {
              BlockInfo.End.reset(Slot);
            }
            BlockInfo.Begin.set(Slot);
          }
        }
      }
    }
  }

  // Update statistics.
  NumMarkerSeen += MarkersFound;
  return MarkersFound;
}

void StackColoring::calculateLocalLiveness() {
  unsigned NumIters = 0;
  bool changed = true;
  while (changed) {
    changed = false;
    ++NumIters;

    for (const MachineBasicBlock *BB : BasicBlockNumbering) {
      // Use an iterator to avoid repeated lookups.
      LivenessMap::iterator BI = BlockLiveness.find(BB);
      assert(BI != BlockLiveness.end() && "Block not found");
      BlockLifetimeInfo &BlockInfo = BI->second;

      // Compute LiveIn by unioning together the LiveOut sets of all preds.
      BitVector LocalLiveIn;
      for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
           PE = BB->pred_end(); PI != PE; ++PI) {
        LivenessMap::const_iterator I = BlockLiveness.find(*PI);
        // PR37130: transformations prior to stack coloring can
        // sometimes leave behind statically unreachable blocks; these
        // can be safely skipped here.
        if (I != BlockLiveness.end())
          LocalLiveIn |= I->second.LiveOut;
      }

      // Compute LiveOut by subtracting out lifetimes that end in this
      // block, then adding in lifetimes that begin in this block.  If
      // we have both BEGIN and END markers in the same basic block
      // then we know that the BEGIN marker comes after the END,
      // because we already handle the case where the BEGIN comes
      // before the END when collecting the markers (and building the
      // BEGIN/END vectors).
      BitVector LocalLiveOut = LocalLiveIn;
      LocalLiveOut.reset(BlockInfo.End);
      LocalLiveOut |= BlockInfo.Begin;

      // Update block LiveIn set, noting whether it has changed.
      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
        changed = true;
        BlockInfo.LiveIn |= LocalLiveIn;
      }

      // Update block LiveOut set, noting whether it has changed.
      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
        changed = true;
        BlockInfo.LiveOut |= LocalLiveOut;
      }
    }
  } // while changed.

  NumIterations = NumIters;
}

void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
  SmallVector<SlotIndex, 16> Starts;
  SmallVector<bool, 16> DefinitelyInUse;

  // For each block, find which slots are active within this block
  // and update the live intervals.
  for (const MachineBasicBlock &MBB : *MF) {
    Starts.clear();
    Starts.resize(NumSlots);
    DefinitelyInUse.clear();
    DefinitelyInUse.resize(NumSlots);

    // Start the interval of the slots that we previously found to be 'in-use'.
    BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
    for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
         pos = MBBLiveness.LiveIn.find_next(pos)) {
      Starts[pos] = Indexes->getMBBStartIdx(&MBB);
    }

    // Create the interval for the basic blocks containing lifetime begin/end.
    for (const MachineInstr &MI : MBB) {
      SmallVector<int, 4> slots;
      bool IsStart = false;
      if (!isLifetimeStartOrEnd(MI, slots, IsStart))
        continue;
      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
      for (auto Slot : slots) {
        if (IsStart) {
          // If a slot is already definitely in use, we don't have to emit
          // a new start marker because there is already a pre-existing
          // one.
          if (!DefinitelyInUse[Slot]) {
            LiveStarts[Slot].push_back(ThisIndex);
            DefinitelyInUse[Slot] = true;
          }
          if (!Starts[Slot].isValid())
            Starts[Slot] = ThisIndex;
        } else {
          if (Starts[Slot].isValid()) {
            VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
            Intervals[Slot]->addSegment(
                LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
            Starts[Slot] = SlotIndex(); // Invalidate the start index
            DefinitelyInUse[Slot] = false;
          }
        }
      }
    }

    // Finish up started segments
    for (unsigned i = 0; i < NumSlots; ++i) {
      if (!Starts[i].isValid())
        continue;

      SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
      VNInfo *VNI = Intervals[i]->getValNumInfo(0);
      Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
    }
  }
}

bool StackColoring::removeAllMarkers() {
  unsigned Count = 0;
  for (MachineInstr *MI : Markers) {
    MI->eraseFromParent();
    Count++;
  }
  Markers.clear();

  LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
  return Count;
}

void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
  unsigned FixedInstr = 0;
  unsigned FixedMemOp = 0;
  unsigned FixedDbg = 0;

  // Remap debug information that refers to stack slots.
  for (auto &VI : MF->getVariableDbgInfo()) {
    if (!VI.Var)
      continue;
    if (SlotRemap.count(VI.Slot)) {
      LLVM_DEBUG(dbgs() << "Remapping debug info for ["
                        << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
      VI.Slot = SlotRemap[VI.Slot];
      FixedDbg++;
    }
  }

  // Keep a list of *allocas* which need to be remapped.
  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;

  // Keep a list of allocas which has been affected by the remap.
  SmallPtrSet<const AllocaInst*, 32> MergedAllocas;

  for (const std::pair<int, int> &SI : SlotRemap) {
    const AllocaInst *From = MFI->getObjectAllocation(SI.first);
    const AllocaInst *To = MFI->getObjectAllocation(SI.second);
    assert(To && From && "Invalid allocation object");
    Allocas[From] = To;

    // AA might be used later for instruction scheduling, and we need it to be
    // able to deduce the correct aliasing releationships between pointers
    // derived from the alloca being remapped and the target of that remapping.
    // The only safe way, without directly informing AA about the remapping
    // somehow, is to directly update the IR to reflect the change being made
    // here.
    Instruction *Inst = const_cast<AllocaInst *>(To);
    if (From->getType() != To->getType()) {
      BitCastInst *Cast = new BitCastInst(Inst, From->getType());
      Cast->insertAfter(Inst);
      Inst = Cast;
    }

    // We keep both slots to maintain AliasAnalysis metadata later.
    MergedAllocas.insert(From);
    MergedAllocas.insert(To);

    // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
    // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
    // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
    MachineFrameInfo::SSPLayoutKind FromKind
        = MFI->getObjectSSPLayout(SI.first);
    MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
    if (FromKind != MachineFrameInfo::SSPLK_None &&
        (ToKind == MachineFrameInfo::SSPLK_None ||
         (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
          FromKind != MachineFrameInfo::SSPLK_AddrOf)))
      MFI->setObjectSSPLayout(SI.second, FromKind);

    // The new alloca might not be valid in a llvm.dbg.declare for this
    // variable, so undef out the use to make the verifier happy.
    AllocaInst *FromAI = const_cast<AllocaInst *>(From);
    if (FromAI->isUsedByMetadata())
      ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
    for (auto &Use : FromAI->uses()) {
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
        if (BCI->isUsedByMetadata())
          ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
    }

    // Note that this will not replace uses in MMOs (which we'll update below),
    // or anywhere else (which is why we won't delete the original
    // instruction).
    FromAI->replaceAllUsesWith(Inst);
  }

  // Remap all instructions to the new stack slots.
  for (MachineBasicBlock &BB : *MF)
    for (MachineInstr &I : BB) {
      // Skip lifetime markers. We'll remove them soon.
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
          I.getOpcode() == TargetOpcode::LIFETIME_END)
        continue;

      // Update the MachineMemOperand to use the new alloca.
      for (MachineMemOperand *MMO : I.memoperands()) {
        // We've replaced IR-level uses of the remapped allocas, so we only
        // need to replace direct uses here.
        const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
        if (!AI)
          continue;

        if (!Allocas.count(AI))
          continue;

        MMO->setValue(Allocas[AI]);
        FixedMemOp++;
      }

      // Update all of the machine instruction operands.
      for (MachineOperand &MO : I.operands()) {
        if (!MO.isFI())
          continue;
        int FromSlot = MO.getIndex();

        // Don't touch arguments.
        if (FromSlot<0)
          continue;

        // Only look at mapped slots.
        if (!SlotRemap.count(FromSlot))
          continue;

        // In a debug build, check that the instruction that we are modifying is
        // inside the expected live range. If the instruction is not inside
        // the calculated range then it means that the alloca usage moved
        // outside of the lifetime markers, or that the user has a bug.
        // NOTE: Alloca address calculations which happen outside the lifetime
        // zone are okay, despite the fact that we don't have a good way
        // for validating all of the usages of the calculation.
#ifndef NDEBUG
        bool TouchesMemory = I.mayLoad() || I.mayStore();
        // If we *don't* protect the user from escaped allocas, don't bother
        // validating the instructions.
        if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
          SlotIndex Index = Indexes->getInstructionIndex(I);
          const LiveInterval *Interval = &*Intervals[FromSlot];
          assert(Interval->find(Index) != Interval->end() &&
                 "Found instruction usage outside of live range.");
        }
#endif

        // Fix the machine instructions.
        int ToSlot = SlotRemap[FromSlot];
        MO.setIndex(ToSlot);
        FixedInstr++;
      }

      // We adjust AliasAnalysis information for merged stack slots.
      SmallVector<MachineMemOperand *, 2> NewMMOs;
      bool ReplaceMemOps = false;
      for (MachineMemOperand *MMO : I.memoperands()) {
        // If this memory location can be a slot remapped here,
        // we remove AA information.
        bool MayHaveConflictingAAMD = false;
        if (MMO->getAAInfo()) {
          if (const Value *MMOV = MMO->getValue()) {
            SmallVector<Value *, 4> Objs;
            getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());

            if (Objs.empty())
              MayHaveConflictingAAMD = true;
            else
              for (Value *V : Objs) {
                // If this memory location comes from a known stack slot
                // that is not remapped, we continue checking.
                // Otherwise, we need to invalidate AA infomation.
                const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
                if (AI && MergedAllocas.count(AI)) {
                  MayHaveConflictingAAMD = true;
                  break;
                }
              }
          }
        }
        if (MayHaveConflictingAAMD) {
          NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
          ReplaceMemOps = true;
        } else {
          NewMMOs.push_back(MMO);
        }
      }

      // If any memory operand is updated, set memory references of
      // this instruction.
      if (ReplaceMemOps)
        I.setMemRefs(*MF, NewMMOs);
    }

  // Update the location of C++ catch objects for the MSVC personality routine.
  if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
    for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
      for (WinEHHandlerType &H : TBME.HandlerArray)
        if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
            SlotRemap.count(H.CatchObj.FrameIndex))
          H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];

  LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
  LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
  LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
}

void StackColoring::removeInvalidSlotRanges() {
  for (MachineBasicBlock &BB : *MF)
    for (MachineInstr &I : BB) {
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
          I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
        continue;

      // Some intervals are suspicious! In some cases we find address
      // calculations outside of the lifetime zone, but not actual memory
      // read or write. Memory accesses outside of the lifetime zone are a clear
      // violation, but address calculations are okay. This can happen when
      // GEPs are hoisted outside of the lifetime zone.
      // So, in here we only check instructions which can read or write memory.
      if (!I.mayLoad() && !I.mayStore())
        continue;

      // Check all of the machine operands.
      for (const MachineOperand &MO : I.operands()) {
        if (!MO.isFI())
          continue;

        int Slot = MO.getIndex();

        if (Slot<0)
          continue;

        if (Intervals[Slot]->empty())
          continue;

        // Check that the used slot is inside the calculated lifetime range.
        // If it is not, warn about it and invalidate the range.
        LiveInterval *Interval = &*Intervals[Slot];
        SlotIndex Index = Indexes->getInstructionIndex(I);
        if (Interval->find(Index) == Interval->end()) {
          Interval->clear();
          LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
          EscapedAllocas++;
        }
      }
    }
}

void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
                                   unsigned NumSlots) {
  // Expunge slot remap map.
  for (unsigned i=0; i < NumSlots; ++i) {
    // If we are remapping i
    if (SlotRemap.count(i)) {
      int Target = SlotRemap[i];
      // As long as our target is mapped to something else, follow it.
      while (SlotRemap.count(Target)) {
        Target = SlotRemap[Target];
        SlotRemap[i] = Target;
      }
    }
  }
}

bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
  LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
                    << "********** Function: " << Func.getName() << '\n');
  MF = &Func;
  MFI = &MF->getFrameInfo();
  Indexes = &getAnalysis<SlotIndexes>();
  BlockLiveness.clear();
  BasicBlocks.clear();
  BasicBlockNumbering.clear();
  Markers.clear();
  Intervals.clear();
  LiveStarts.clear();
  VNInfoAllocator.Reset();

  unsigned NumSlots = MFI->getObjectIndexEnd();

  // If there are no stack slots then there are no markers to remove.
  if (!NumSlots)
    return false;

  SmallVector<int, 8> SortedSlots;
  SortedSlots.reserve(NumSlots);
  Intervals.reserve(NumSlots);
  LiveStarts.resize(NumSlots);

  unsigned NumMarkers = collectMarkers(NumSlots);

  unsigned TotalSize = 0;
  LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
                    << " slots\n");
  LLVM_DEBUG(dbgs() << "Slot structure:\n");

  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
    LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
                      << " bytes.\n");
    TotalSize += MFI->getObjectSize(i);
  }

  LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");

  // Don't continue because there are not enough lifetime markers, or the
  // stack is too small, or we are told not to optimize the slots.
  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
      skipFunction(Func.getFunction())) {
    LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
    return removeAllMarkers();
  }

  for (unsigned i=0; i < NumSlots; ++i) {
    std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
    Intervals.push_back(std::move(LI));
    SortedSlots.push_back(i);
  }

  // Calculate the liveness of each block.
  calculateLocalLiveness();
  LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
  LLVM_DEBUG(dump());

  // Propagate the liveness information.
  calculateLiveIntervals(NumSlots);
  LLVM_DEBUG(dumpIntervals());

  // Search for allocas which are used outside of the declared lifetime
  // markers.
  if (ProtectFromEscapedAllocas)
    removeInvalidSlotRanges();

  // Maps old slots to new slots.
  DenseMap<int, int> SlotRemap;
  unsigned RemovedSlots = 0;
  unsigned ReducedSize = 0;

  // Do not bother looking at empty intervals.
  for (unsigned I = 0; I < NumSlots; ++I) {
    if (Intervals[SortedSlots[I]]->empty())
      SortedSlots[I] = -1;
  }

  // This is a simple greedy algorithm for merging allocas. First, sort the
  // slots, placing the largest slots first. Next, perform an n^2 scan and look
  // for disjoint slots. When you find disjoint slots, merge the samller one
  // into the bigger one and update the live interval. Remove the small alloca
  // and continue.

  // Sort the slots according to their size. Place unused slots at the end.
  // Use stable sort to guarantee deterministic code generation.
  llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
    // We use -1 to denote a uninteresting slot. Place these slots at the end.
    if (LHS == -1)
      return false;
    if (RHS == -1)
      return true;
    // Sort according to size.
    return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
  });

  for (auto &s : LiveStarts)
    llvm::sort(s);

  bool Changed = true;
  while (Changed) {
    Changed = false;
    for (unsigned I = 0; I < NumSlots; ++I) {
      if (SortedSlots[I] == -1)
        continue;

      for (unsigned J=I+1; J < NumSlots; ++J) {
        if (SortedSlots[J] == -1)
          continue;

        int FirstSlot = SortedSlots[I];
        int SecondSlot = SortedSlots[J];
        LiveInterval *First = &*Intervals[FirstSlot];
        LiveInterval *Second = &*Intervals[SecondSlot];
        auto &FirstS = LiveStarts[FirstSlot];
        auto &SecondS = LiveStarts[SecondSlot];
        assert(!First->empty() && !Second->empty() && "Found an empty range");

        // Merge disjoint slots. This is a little bit tricky - see the
        // Implementation Notes section for an explanation.
        if (!First->isLiveAtIndexes(SecondS) &&
            !Second->isLiveAtIndexes(FirstS)) {
          Changed = true;
          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));

          int OldSize = FirstS.size();
          FirstS.append(SecondS.begin(), SecondS.end());
          auto Mid = FirstS.begin() + OldSize;
          std::inplace_merge(FirstS.begin(), Mid, FirstS.end());

          SlotRemap[SecondSlot] = FirstSlot;
          SortedSlots[J] = -1;
          LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
                            << SecondSlot << " together.\n");
          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
                                           MFI->getObjectAlignment(SecondSlot));

          assert(MFI->getObjectSize(FirstSlot) >=
                 MFI->getObjectSize(SecondSlot) &&
                 "Merging a small object into a larger one");

          RemovedSlots+=1;
          ReducedSize += MFI->getObjectSize(SecondSlot);
          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
          MFI->RemoveStackObject(SecondSlot);
        }
      }
    }
  }// While changed.

  // Record statistics.
  StackSpaceSaved += ReducedSize;
  StackSlotMerged += RemovedSlots;
  LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
                    << ReducedSize << " bytes\n");

  // Scan the entire function and update all machine operands that use frame
  // indices to use the remapped frame index.
  expungeSlotMap(SlotRemap, NumSlots);
  remapInstructions(SlotRemap);

  return removeAllMarkers();
}