reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//

#include "AArch64RegisterInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64StackOffset.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "AArch64GenRegisterInfo.inc"

AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
    : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
  AArch64_MC::initLLVMToCVRegMapping(this);
}

const MCPhysReg *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows())
    return CSR_Win_AArch64_AAPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::GHC)
    // GHC set of callee saved regs is empty as all those regs are
    // used for passing STG regs around
    return CSR_AArch64_NoRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
    return CSR_AArch64_AllRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
    return CSR_AArch64_AAVPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
    return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR() ?
           CSR_AArch64_CXX_TLS_Darwin_PE_SaveList :
           CSR_AArch64_CXX_TLS_Darwin_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_AArch64_AAPCS_SwiftError_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
    return CSR_AArch64_RT_MostRegs_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
    return CSR_Darwin_AArch64_AAPCS_SaveList;
  return CSR_AArch64_AAPCS_SaveList;
}

const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
    return CSR_AArch64_CXX_TLS_Darwin_ViaCopy_SaveList;
  return nullptr;
}

void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
    MachineFunction &MF) const {
  const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
  SmallVector<MCPhysReg, 32> UpdatedCSRs;
  for (const MCPhysReg *I = CSRs; *I; ++I)
    UpdatedCSRs.push_back(*I);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
    }
  }
  // Register lists are zero-terminated.
  UpdatedCSRs.push_back(0);
  MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
}

const TargetRegisterClass *
AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
                                       unsigned Idx) const {
  // edge case for GPR/FPR register classes
  if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR32RegClass;
  else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR64RegClass;

  // Forward to TableGen's default version.
  return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
}

const uint32_t *
AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
  if (CC == CallingConv::AnyReg)
    return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
  if (CC == CallingConv::CXX_FAST_TLS)
    return SCS ? CSR_AArch64_CXX_TLS_Darwin_SCS_RegMask
               : CSR_AArch64_CXX_TLS_Darwin_RegMask;
  if (CC == CallingConv::AArch64_VectorCall)
    return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
  if (CC == CallingConv::AArch64_SVE_VectorCall)
    return CSR_AArch64_SVE_AAPCS_RegMask;
  if (CC == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_RegMask;
  if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
               : CSR_AArch64_AAPCS_SwiftError_RegMask;
  if (CC == CallingConv::PreserveMost)
    return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
               : CSR_AArch64_RT_MostRegs_RegMask;
  else
    return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
}

const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
  if (TT.isOSDarwin())
    return CSR_AArch64_TLS_Darwin_RegMask;

  assert(TT.isOSBinFormatELF() && "Invalid target");
  return CSR_AArch64_TLS_ELF_RegMask;
}

void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
                                                 const uint32_t **Mask) const {
  uint32_t *UpdatedMask = MF.allocateRegMask();
  unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
  memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i),
                                   this, true);
           SubReg.isValid(); ++SubReg) {
        // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
        // register mask.
        UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32);
      }
    }
  }
  *Mask = UpdatedMask;
}

const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
  return CSR_AArch64_NoRegs_RegMask;
}

const uint32_t *
AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  // This should return a register mask that is the same as that returned by
  // getCallPreservedMask but that additionally preserves the register used for
  // the first i64 argument (which must also be the register used to return a
  // single i64 return value)
  //
  // In case that the calling convention does not use the same register for
  // both, the function should return NULL (does not currently apply)
  assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
  return CSR_AArch64_AAPCS_ThisReturn_RegMask;
}

const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
  return CSR_AArch64_StackProbe_Windows_RegMask;
}

BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  // FIXME: avoid re-calculating this every time.
  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, AArch64::WSP);
  markSuperRegs(Reserved, AArch64::WZR);

  if (TFI->hasFP(MF) || TT.isOSDarwin())
    markSuperRegs(Reserved, AArch64::W29);

  for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
      markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
  }

  if (hasBasePointer(MF))
    markSuperRegs(Reserved, AArch64::W19);

  // SLH uses register W16/X16 as the taint register.
  if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    markSuperRegs(Reserved, AArch64::W16);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
                                      unsigned Reg) const {
  return getReservedRegs(MF)[Reg];
}

bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
  return std::any_of(std::begin(*AArch64::GPR64argRegClass.MC),
                     std::end(*AArch64::GPR64argRegClass.MC),
                     [this, &MF](MCPhysReg r){return isReservedReg(MF, r);});
}

void AArch64RegisterInfo::emitReservedArgRegCallError(
    const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  F.getContext().diagnose(DiagnosticInfoUnsupported{F, "AArch64 doesn't support"
    " function calls if any of the argument registers is reserved."});
}

bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
                                          unsigned PhysReg) const {
  return !isReservedReg(MF, PhysReg);
}

bool AArch64RegisterInfo::isConstantPhysReg(unsigned PhysReg) const {
  return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR;
}

const TargetRegisterClass *
AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
                                      unsigned Kind) const {
  return &AArch64::GPR64spRegClass;
}

const TargetRegisterClass *
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &AArch64::CCRRegClass)
    return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
  return RC;
}

unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }

bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // In the presence of variable sized objects or funclets, if the fixed stack
  // size is large enough that referencing from the FP won't result in things
  // being in range relatively often, we can use a base pointer to allow access
  // from the other direction like the SP normally works.
  //
  // Furthermore, if both variable sized objects are present, and the
  // stack needs to be dynamically re-aligned, the base pointer is the only
  // reliable way to reference the locals.
  if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
    if (needsStackRealignment(MF))
      return true;
    // Conservatively estimate whether the negative offset from the frame
    // pointer will be sufficient to reach. If a function has a smallish
    // frame, it's less likely to have lots of spills and callee saved
    // space, so it's all more likely to be within range of the frame pointer.
    // If it's wrong, we'll materialize the constant and still get to the
    // object; it's just suboptimal. Negative offsets use the unscaled
    // load/store instructions, which have a 9-bit signed immediate.
    return MFI.getLocalFrameSize() >= 256;
  }

  return false;
}

Register
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
}

bool AArch64RegisterInfo::requiresRegisterScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
  // This function indicates whether the emergency spillslot should be placed
  // close to the beginning of the stackframe (closer to FP) or the end
  // (closer to SP).
  //
  // The beginning works most reliably if we have a frame pointer.
  const AArch64FrameLowering &TFI = *getFrameLowering(MF);
  return TFI.hasFP(MF);
}

bool AArch64RegisterInfo::requiresFrameIndexScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
    return true;
  return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
}

/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
                                            int64_t Offset) const {
  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
    assert(i < MI->getNumOperands() &&
           "Instr doesn't have FrameIndex operand!");

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  if (!MI->mayLoad() && !MI->mayStore())
    return false;

  // Without a virtual base register, if the function has variable sized
  // objects, all fixed-size local references will be via the frame pointer,
  // Approximate the offset and see if it's legal for the instruction.
  // Note that the incoming offset is based on the SP value at function entry,
  // so it'll be negative.
  MachineFunction &MF = *MI->getParent()->getParent();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // Estimate an offset from the frame pointer.
  // Conservatively assume all GPR callee-saved registers get pushed.
  // FP, LR, X19-X28, D8-D15. 64-bits each.
  int64_t FPOffset = Offset - 16 * 20;
  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += MFI.getLocalFrameSize();
  // Assume that we'll have at least some spill slots allocated.
  // FIXME: This is a total SWAG number. We should run some statistics
  //        and pick a real one.
  Offset += 128; // 128 bytes of spill slots

  // If there is a frame pointer, try using it.
  // The FP is only available if there is no dynamic realignment. We
  // don't know for sure yet whether we'll need that, so we guess based
  // on whether there are any local variables that would trigger it.
  if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
    return false;

  // If we can reference via the stack pointer or base pointer, try that.
  // FIXME: This (and the code that resolves the references) can be improved
  //        to only disallow SP relative references in the live range of
  //        the VLA(s). In practice, it's unclear how much difference that
  //        would make, but it may be worth doing.
  if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
    return false;

  // The offset likely isn't legal; we want to allocate a virtual base register.
  return true;
}

bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                             unsigned BaseReg,
                                             int64_t Offset) const {
  assert(Offset <= INT_MAX && "Offset too big to fit in int.");
  assert(MI && "Unable to get the legal offset for nil instruction.");
  StackOffset SaveOffset(Offset, MVT::i8);
  return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
}

/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
/// at the beginning of the basic block.
void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                       unsigned BaseReg,
                                                       int FrameIdx,
                                                       int64_t Offset) const {
  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL; // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();
  const MachineFunction &MF = *MBB->getParent();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
  unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);

  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
      .addFrameIndex(FrameIdx)
      .addImm(Offset)
      .addImm(Shifter);
}

void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
                                            int64_t Offset) const {
  // ARM doesn't need the general 64-bit offsets
  StackOffset Off(Offset, MVT::i8);

  unsigned i = 0;

  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  const MachineFunction *MF = MI.getParent()->getParent();
  const AArch64InstrInfo *TII =
      MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
  bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
  assert(Done && "Unable to resolve frame index!");
  (void)Done;
}

void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                              int SPAdj, unsigned FIOperandNum,
                                              RegScavenger *RS) const {
  assert(SPAdj == 0 && "Unexpected");

  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  bool Tagged =
      MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
  unsigned FrameReg;

  // Special handling of dbg_value, stackmap and patchpoint instructions.
  if (MI.isDebugValue() || MI.getOpcode() == TargetOpcode::STACKMAP ||
      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
    StackOffset Offset =
        TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
                                        /*PreferFP=*/true,
                                        /*ForSimm=*/false);
    Offset += StackOffset(MI.getOperand(FIOperandNum + 1).getImm(), MVT::i8);
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
    MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getBytes());
    return;
  }

  if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
    MachineOperand &FI = MI.getOperand(FIOperandNum);
    int Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
    FI.ChangeToImmediate(Offset);
    return;
  }

  StackOffset Offset;
  if (MI.getOpcode() == AArch64::TAGPstack) {
    // TAGPstack must use the virtual frame register in its 3rd operand.
    const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
    FrameReg = MI.getOperand(3).getReg();
    Offset = {MFI.getObjectOffset(FrameIndex) +
                  AFI->getTaggedBasePointerOffset(),
              MVT::i8};
  } else if (Tagged) {
    StackOffset SPOffset = {
        MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize(), MVT::i8};
    if (MFI.hasVarSizedObjects() ||
        isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
            (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
      // Can't update to SP + offset in place. Precalculate the tagged pointer
      // in a scratch register.
      Offset = TFI->resolveFrameIndexReference(
          MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
      Register ScratchReg =
          MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
      emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
                      TII);
      BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
          .addReg(ScratchReg)
          .addReg(ScratchReg)
          .addImm(0);
      MI.getOperand(FIOperandNum)
          .ChangeToRegister(ScratchReg, false, false, true);
      return;
    }
    FrameReg = AArch64::SP;
    Offset = {MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize(),
              MVT::i8};
  } else {
    Offset = TFI->resolveFrameIndexReference(
        MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
  }

  // Modify MI as necessary to handle as much of 'Offset' as possible
  if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
    return;

  assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
         "Emergency spill slot is out of reach");

  // If we get here, the immediate doesn't fit into the instruction.  We folded
  // as much as possible above.  Handle the rest, providing a register that is
  // SP+LargeImm.
  Register ScratchReg =
      MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
  emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
  MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
}

unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                                  MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  switch (RC->getID()) {
  default:
    return 0;
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR64commonRegClassID:
    return 32 - 1                                   // XZR/SP
              - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
              - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
              - hasBasePointer(MF);  // X19
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR128RegClassID:
    return 32;

  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return 32;

  case AArch64::FPR128_loRegClassID:
    return 16;
  }
}

unsigned AArch64RegisterInfo::getLocalAddressRegister(
  const MachineFunction &MF) const {
  const auto &MFI = MF.getFrameInfo();
  if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
    return AArch64::SP;
  else if (needsStackRealignment(MF))
    return getBaseRegister();
  return getFrameRegister(MF);
}