reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//

#include "HexagonISelLowering.h"
#include "Hexagon.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "hexagon-lowering"

static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
  cl::init(true), cl::Hidden,
  cl::desc("Control jump table emission on Hexagon target"));

static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Hexagon SDNode scheduling"));

static cl::opt<bool> EnableFastMath("ffast-math",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Fast Math processing"));

static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
  cl::Hidden, cl::ZeroOrMore, cl::init(5),
  cl::desc("Set minimum jump tables"));

static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
  cl::Hidden, cl::ZeroOrMore, cl::init(8),
  cl::desc("Max #stores to inline memset"));

static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memset"));

static cl::opt<bool> AlignLoads("hexagon-align-loads",
  cl::Hidden, cl::init(false),
  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));


namespace {

  class HexagonCCState : public CCState {
    unsigned NumNamedVarArgParams = 0;

  public:
    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
                   unsigned NumNamedArgs)
        : CCState(CC, IsVarArg, MF, locs, C),
          NumNamedVarArgParams(NumNamedArgs) {}
    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
  };

} // end anonymous namespace


// Implement calling convention for Hexagon.

static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                       CCValAssign::LocInfo &LocInfo,
                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
  static const MCPhysReg ArgRegs[] = {
    Hexagon::R0, Hexagon::R1, Hexagon::R2,
    Hexagon::R3, Hexagon::R4, Hexagon::R5
  };
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);

  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
  if (RegNum != NumArgRegs && RegNum % 2 == 1)
    State.AllocateReg(ArgRegs[RegNum]);

  // Always return false here, as this function only makes sure that the first
  // unallocated register has an even register number and does not actually
  // allocate a register for the current argument.
  return false;
}

#include "HexagonGenCallingConv.inc"


SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
      const {
  return SDValue();
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size".  Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.  Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
                                         SelectionDAG &DAG, const SDLoc &dl) {
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
                       /*isVolatile=*/false, /*AlwaysInline=*/false,
                       /*isTailCall=*/false,
                       MachinePointerInfo(), MachinePointerInfo());
}

bool
HexagonTargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);

  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
}

// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                   bool IsVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   const SDLoc &dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze return values of ISD::RET
  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
}

bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  // If either no tail call or told not to tail call at all, don't.
  auto Attr =
      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
    return false;

  return true;
}

Register HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT,
                                                  const MachineFunction &) const {
  // Just support r19, the linux kernel uses it.
  Register Reg = StringSwitch<Register>(RegName)
                     .Case("r19", Hexagon::R19)
                     .Default(Register());
  if (Reg)
    return Reg;

  report_fatal_error("Invalid register name global variable");
}

/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers.  This assumes that
/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue HexagonTargetLowering::LowerCallResult(
    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;

  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    SDValue RetVal;
    if (RVLocs[i].getValVT() == MVT::i1) {
      // Return values of type MVT::i1 require special handling. The reason
      // is that MVT::i1 is associated with the PredRegs register class, but
      // values of that type are still returned in R0. Generate an explicit
      // copy into a predicate register from R0, and treat the value of the
      // predicate register as the call result.
      auto &MRI = DAG.getMachineFunction().getRegInfo();
      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                       MVT::i32, Glue);
      // FR0 = (Value, Chain, Glue)
      Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
                                     FR0.getValue(0), FR0.getValue(2));
      // TPR = (Chain, Glue)
      // Don't glue this CopyFromReg, because it copies from a virtual
      // register. If it is glued to the call, InstrEmitter will add it
      // as an implicit def to the call (EmitMachineNode).
      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
      Glue = TPR.getValue(1);
      Chain = TPR.getValue(0);
    } else {
      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                  RVLocs[i].getValVT(), Glue);
      Glue = RetVal.getValue(2);
      Chain = RetVal.getValue(1);
    }
    InVals.push_back(RetVal.getValue(0));
  }

  return Chain;
}

/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;
  bool DoesNotReturn                    = CLI.DoesNotReturn;

  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto PtrVT = getPointerTy(MF.getDataLayout());

  unsigned NumParams = CLI.CS.getInstruction()
                        ? CLI.CS.getFunctionType()->getNumParams()
                        : 0;
  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
                        NumParams);

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
  else
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);

  auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
  if (Attr.getValueAsString() == "true")
    CLI.IsTailCall = false;

  if (CLI.IsTailCall) {
    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
                        OutVals, Ins, DAG);
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
      CCValAssign &VA = ArgLocs[i];
      if (VA.isMemLoc()) {
        CLI.IsTailCall = false;
        break;
      }
    }
    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
                                         : "Argument must be passed on stack. "
                                           "Not eligible for Tail Call\n"));
  }
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);

  bool NeedsArgAlign = false;
  unsigned LargestAlignSeen = 0;
  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    // Record if we need > 8 byte alignment on an argument.
    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
    NeedsArgAlign |= ArgAlign;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
      default:
        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::BCvt:
        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
        break;
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::AExt:
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
        break;
    }

    if (VA.isMemLoc()) {
      unsigned LocMemOffset = VA.getLocMemOffset();
      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
                                        StackPtr.getValueType());
      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
      if (ArgAlign)
        LargestAlignSeen = std::max(LargestAlignSeen,
                                    VA.getLocVT().getStoreSizeInBits() >> 3);
      if (Flags.isByVal()) {
        // The argument is a struct passed by value. According to LLVM, "Arg"
        // is a pointer.
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
                                                        Flags, DAG, dl));
      } else {
        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
            DAG.getMachineFunction(), LocMemOffset);
        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
        MemOpChains.push_back(S);
      }
      continue;
    }

    // Arguments that can be passed on register must be kept at RegsToPass
    // vector.
    if (VA.isRegLoc())
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
  }

  if (NeedsArgAlign && Subtarget.hasV60Ops()) {
    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
    unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
    MFI.ensureMaxAlignment(LargestAlignSeen);
  }
  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  SDValue Glue;
  if (!CLI.IsTailCall) {
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
    Glue = Chain.getValue(1);
  }

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The Glue is necessary since all emitted instructions must be
  // stuck together.
  if (!CLI.IsTailCall) {
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
  } else {
    // For tail calls lower the arguments to the 'real' stack slot.
    //
    // Force all the incoming stack arguments to be loaded from the stack
    // before any new outgoing arguments are stored to the stack, because the
    // outgoing stack slots may alias the incoming argument stack slots, and
    // the alias isn't otherwise explicit. This is slightly more conservative
    // than necessary, because it means that each store effectively depends
    // on every argument instead of just those arguments it would clobber.
    //
    // Do not flag preceding copytoreg stuff together with the following stuff.
    Glue = SDValue();
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
    Glue = SDValue();
  }

  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
  } else if (ExternalSymbolSDNode *S =
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));
  }

  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (Glue.getNode())
    Ops.push_back(Glue);

  if (CLI.IsTailCall) {
    MFI.setHasTailCall();
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
  }

  // Set this here because we need to know this for "hasFP" in frame lowering.
  // The target-independent code calls getFrameRegister before setting it, and
  // getFrameRegister uses hasFP to determine whether the function has FP.
  MFI.setHasCalls(true);

  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
  Glue = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
  Glue = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
                         InVals, OutVals, Callee);
}

/// Returns true by value, base pointer and offset pointer and addressing
/// mode by reference if this node can be combined with a load / store to
/// form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
      SelectionDAG &DAG) const {
  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
  if (!LSN)
    return false;
  EVT VT = LSN->getMemoryVT();
  if (!VT.isSimple())
    return false;
  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
                     VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
                     VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
                     VT == MVT::v4i16 || VT == MVT::v8i8 ||
                     Subtarget.isHVXVectorType(VT.getSimpleVT());
  if (!IsLegalType)
    return false;

  if (Op->getOpcode() != ISD::ADD)
    return false;
  Base = Op->getOperand(0);
  Offset = Op->getOperand(1);
  if (!isa<ConstantSDNode>(Offset.getNode()))
    return false;
  AM = ISD::POST_INC;

  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
}

SDValue
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  unsigned LR = HRI.getRARegister();

  if ((Op.getOpcode() != ISD::INLINEASM &&
       Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
    return Op;

  unsigned NumOps = Op.getNumOperands();
  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
    --NumOps;  // Ignore the flag operand.

  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    ++i;  // Skip the ID value.

    switch (InlineAsm::getKind(Flags)) {
      default:
        llvm_unreachable("Bad flags!");
      case InlineAsm::Kind_RegUse:
      case InlineAsm::Kind_Imm:
      case InlineAsm::Kind_Mem:
        i += NumVals;
        break;
      case InlineAsm::Kind_Clobber:
      case InlineAsm::Kind_RegDef:
      case InlineAsm::Kind_RegDefEarlyClobber: {
        for (; NumVals; --NumVals, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
          if (Reg != LR)
            continue;
          HMFI.setHasClobberLR(true);
          return Op;
        }
        break;
      }
    }
  }

  return Op;
}

// Need to transform ISD::PREFETCH into something that doesn't inherit
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
// SDNPMayStore.
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
  // if the "reg" is fed by an "add".
  SDLoc DL(Op);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}

// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
// is marked as having side-effects, while the register read on Hexagon does
// not have any. TableGen refuses to accept the direct pattern from that node
// to the A4_tfrcpp.
SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
                                                     SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDLoc dl(Op);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
}

SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
      SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
  if (IntNo == Intrinsic::hexagon_prefetch) {
    SDValue Addr = Op.getOperand(2);
    SDLoc DL(Op);
    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
  }
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  SDValue Align = Op.getOperand(2);
  SDLoc dl(Op);

  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");

  unsigned A = AlignConst->getSExtValue();
  auto &HFI = *Subtarget.getFrameLowering();
  // "Zero" means natural stack alignment.
  if (A == 0)
    A = HFI.getStackAlignment();

  LLVM_DEBUG({
    dbgs () << __func__ << " Align: " << A << " Size: ";
    Size.getNode()->dump(&DAG);
    dbgs() << "\n";
  });

  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);

  DAG.ReplaceAllUsesOfValueWith(Op, AA);
  return AA;
}

SDValue HexagonTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
                        MF.getFunction().getFunctionType()->getNumParams());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
  else
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);

  // For LLVM, in the case when returning a struct by value (>8byte),
  // the first argument is a pointer that points to the location on caller's
  // stack where the return value will be stored. For Hexagon, the location on
  // caller's stack is passed only when the struct size is smaller than (and
  // equal to) 8 bytes. If not, no address will be passed into callee and
  // callee return the result direclty through R0/R1.

  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    bool ByVal = Flags.isByVal();

    // Arguments passed in registers:
    // 1. 32- and 64-bit values and HVX vectors are passed directly,
    // 2. Large structs are passed via an address, and the address is
    //    passed in a register.
    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
      llvm_unreachable("ByValSize must be bigger than 8 bytes");

    bool InReg = VA.isRegLoc() &&
                 (!ByVal || (ByVal && Flags.getByValSize() > 8));

    if (InReg) {
      MVT RegVT = VA.getLocVT();
      if (VA.getLocInfo() == CCValAssign::BCvt)
        RegVT = VA.getValVT();

      const TargetRegisterClass *RC = getRegClassFor(RegVT);
      Register VReg = MRI.createVirtualRegister(RC);
      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);

      // Treat values of type MVT::i1 specially: they are passed in
      // registers of type i32, but they need to remain as values of
      // type i1 for consistency of the argument lowering.
      if (VA.getValVT() == MVT::i1) {
        assert(RegVT.getSizeInBits() <= 32);
        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
                                Copy, DAG.getConstant(1, dl, RegVT));
        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
                            ISD::SETNE);
      } else {
#ifndef NDEBUG
        unsigned RegSize = RegVT.getSizeInBits();
        assert(RegSize == 32 || RegSize == 64 ||
               Subtarget.isHVXVectorType(RegVT));
#endif
      }
      InVals.push_back(Copy);
      MRI.addLiveIn(VA.getLocReg(), VReg);
    } else {
      assert(VA.isMemLoc() && "Argument should be passed in memory");

      // If it's a byval parameter, then we need to compute the
      // "real" size, not the size of the pointer.
      unsigned ObjSize = Flags.isByVal()
                            ? Flags.getByValSize()
                            : VA.getLocVT().getStoreSizeInBits() / 8;

      // Create the frame index object for this incoming parameter.
      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);

      if (Flags.isByVal()) {
        // If it's a pass-by-value aggregate, then do not dereference the stack
        // location. Instead, we should generate a reference to the stack
        // location.
        InVals.push_back(FIN);
      } else {
        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
                                MachinePointerInfo::getFixedStack(MF, FI, 0));
        InVals.push_back(L);
      }
    }
  }


  if (IsVarArg) {
    // This will point to the next argument passed via stack.
    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
    HMFI.setVarArgsFrameIndex(FI);
  }

  return Chain;
}

SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  // VASTART stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  MachineFunction &MF = DAG.getMachineFunction();
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  const SDLoc &dl(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  MVT ResTy = ty(Op);
  MVT OpTy = ty(LHS);

  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
    MVT ElemTy = OpTy.getVectorElementType();
    assert(ElemTy.isScalarInteger());
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
                                  OpTy.getVectorNumElements());
    return DAG.getSetCC(dl, ResTy,
                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
  }

  // Treat all other vector types as legal.
  if (ResTy.isVector())
    return Op;

  // Comparisons of short integers should use sign-extend, not zero-extend,
  // since we can represent small negative values in the compare instructions.
  // The LLVM default is to use zero-extend arbitrarily in these cases.
  auto isSExtFree = [this](SDValue N) {
    switch (N.getOpcode()) {
      case ISD::TRUNCATE: {
        // A sign-extend of a truncate of a sign-extend is free.
        SDValue Op = N.getOperand(0);
        if (Op.getOpcode() != ISD::AssertSext)
          return false;
        EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
        unsigned ThisBW = ty(N).getSizeInBits();
        unsigned OrigBW = OrigTy.getSizeInBits();
        // The type that was sign-extended to get the AssertSext must be
        // narrower than the type of N (so that N has still the same value
        // as the original).
        return ThisBW >= OrigBW;
      }
      case ISD::LOAD:
        // We have sign-extended loads.
        return true;
    }
    return false;
  };

  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
    bool IsNegative = C && C->getAPIntValue().isNegative();
    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
      return DAG.getSetCC(dl, ResTy,
                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDValue PredOp = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
  MVT OpTy = ty(Op1);
  const SDLoc &dl(Op);

  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
    MVT ElemTy = OpTy.getVectorElementType();
    assert(ElemTy.isScalarInteger());
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
                                  OpTy.getVectorNumElements());
    // Generate (trunc (select (_, sext, sext))).
    return DAG.getSExtOrTrunc(
              DAG.getSelect(dl, WideTy, PredOp,
                            DAG.getSExtOrTrunc(Op1, dl, WideTy),
                            DAG.getSExtOrTrunc(Op2, dl, WideTy)),
              dl, OpTy);
  }

  return SDValue();
}

static Constant *convert_i1_to_i8(const Constant *ConstVal) {
  SmallVector<Constant *, 128> NewConst;
  const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
  if (!CV)
    return nullptr;

  LLVMContext &Ctx = ConstVal->getContext();
  IRBuilder<> IRB(Ctx);
  unsigned NumVectorElements = CV->getNumOperands();
  assert(isPowerOf2_32(NumVectorElements) &&
         "conversion only supported for pow2 VectorSize!");

  for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
    uint8_t x = 0;
    for (unsigned j = 0; j < 8; ++j) {
      uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
      x |= y << (7 - j);
    }
    assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
    NewConst.push_back(IRB.getInt8(x));
  }
  return ConstantVector::get(NewConst);
}

SDValue
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
  EVT ValTy = Op.getValueType();
  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
  Constant *CVal = nullptr;
  bool isVTi1Type = false;
  if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
    Type *CValTy = ConstVal->getType();
    if (CValTy->isVectorTy() &&
        CValTy->getVectorElementType()->isIntegerTy(1)) {
      CVal = convert_i1_to_i8(ConstVal);
      isVTi1Type = (CVal != nullptr);
    }
  }
  unsigned Align = CPN->getAlignment();
  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;

  unsigned Offset = 0;
  SDValue T;
  if (CPN->isMachineConstantPoolEntry())
    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
                                  TF);
  else if (isVTi1Type)
    T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
  else
    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);

  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
         "Inconsistent target flag encountered");

  if (IsPositionIndependent)
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
}

SDValue
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
  if (isPositionIndependent()) {
    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
  }

  SDValue T = DAG.getTargetJumpTable(Idx, VT);
  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
}

SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}

SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
                                         HRI.getFrameRegister(), VT);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());
  return FrameAddr;
}

SDValue
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
  SDLoc dl(Op);
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}

SDValue
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  auto *GAN = cast<GlobalAddressSDNode>(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  auto *GV = GAN->getGlobal();
  int64_t Offset = GAN->getOffset();

  auto &HLOF = *HTM.getObjFileLowering();
  Reloc::Model RM = HTM.getRelocationModel();

  if (RM == Reloc::Static) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
    const GlobalObject *GO = GV->getBaseObject();
    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
  }

  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
  if (UsePCRel) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
                                            HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
  }

  // Use GOT index.
  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
}

// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
SDValue
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
  SDLoc dl(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  Reloc::Model RM = HTM.getRelocationModel();
  if (RM == Reloc::Static) {
    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
  }

  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
}

SDValue
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
      const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
                                               HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
}

SDValue
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
      unsigned char OperandFlags) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SDLoc dl(GA);
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
                                           GA->getValueType(0),
                                           GA->getOffset(),
                                           OperandFlags);
  // Create Operands for the call.The Operands should have the following:
  // 1. Chain SDValue
  // 2. Callee which in this case is the Global address value.
  // 3. Registers live into the call.In this case its R0, as we
  //    have just one argument to be passed.
  // 4. Glue.
  // Note: The order is important.

  const auto &HRI = *Subtarget.getRegisterInfo();
  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
  assert(Mask && "Missing call preserved mask for calling convention");
  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
                    DAG.getRegisterMask(Mask), Glue };
  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);

  // Inform MFI that function has calls.
  MFI.setAdjustsStack(true);

  Glue = Chain.getValue(1);
  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
}

//
// Lower using the intial executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);

  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF =
      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
                                           Offset, TF);

  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  if (IsPositionIndependent) {
    // Generate the GOT pointer in case of position independent code
    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);

    // Add the TLS Symbol address to GOT pointer.This gives
    // GOT relative relocation for the symbol.
    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
  }

  // Load the offset value for TLS symbol.This offset is relative to
  // thread pointer.
  SDValue LoadOffset =
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
}

//
// Lower using the local executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
  // Generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_TPREL);
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
}

//
// Lower using the general dynamic model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_GDGOT);

  // Then, generate the GOT pointer
  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);

  // Add the TLS symbol and the GOT pointer
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);

  // Copy over the argument to R0
  SDValue InFlag;
  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
  InFlag = Chain.getValue(1);

  unsigned Flags =
      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
          : HexagonII::MO_GDPLT;

  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
                           Hexagon::R0, Flags);
}

//
// Lower TLS addresses.
//
// For now for dynamic models, we only support the general dynamic model.
//
SDValue
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
      SelectionDAG &DAG) const {
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  switch (HTM.getTLSModel(GA->getGlobal())) {
    case TLSModel::GeneralDynamic:
    case TLSModel::LocalDynamic:
      return LowerToTLSGeneralDynamicModel(GA, DAG);
    case TLSModel::InitialExec:
      return LowerToTLSInitialExecModel(GA, DAG);
    case TLSModel::LocalExec:
      return LowerToTLSLocalExecModel(GA, DAG);
  }
  llvm_unreachable("Bogus TLS model");
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
                                             const HexagonSubtarget &ST)
    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
      Subtarget(ST) {
  auto &HRI = *Subtarget.getRegisterInfo();

  setPrefLoopAlignment(Align(16));
  setMinFunctionAlignment(Align(4));
  setPrefFunctionAlignment(Align(16));
  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);

  setMaxAtomicSizeInBitsSupported(64);
  setMinCmpXchgSizeInBits(32);

  if (EnableHexSDNodeSched)
    setSchedulingPreference(Sched::VLIW);
  else
    setSchedulingPreference(Sched::Source);

  // Limits for inline expansion of memcpy/memmove
  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
  MaxStoresPerMemset = MaxStoresPerMemsetCL;
  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;

  //
  // Set up register classes.
  //

  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);

  addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);

  //
  // Handling of scalar operations.
  //
  // All operations default to "legal", except:
  // - indexed loads and stores (pre-/post-incremented),
  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
  // which default to "expand" for at least one type.

  // Misc operations.
  setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
  setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
  setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
  setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
  setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
  setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
  setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
  setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
  setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
  setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
  setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
  setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
  setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);

  // Custom legalize GlobalAddress nodes into CONST32.
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);

  // Hexagon needs to optimize cases with negative constants.
  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);

  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
  setOperationAction(ISD::VACOPY,  MVT::Other, Expand);

  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);

  if (EmitJumpTables)
    setMinimumJumpTableEntries(MinimumJumpTables);
  else
    setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);

  setOperationAction(ISD::ABS, MVT::i32, Legal);
  setOperationAction(ISD::ABS, MVT::i64, Legal);

  // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
  // but they only operate on i64.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::UADDO,    VT, Custom);
    setOperationAction(ISD::USUBO,    VT, Custom);
    setOperationAction(ISD::SADDO,    VT, Expand);
    setOperationAction(ISD::SSUBO,    VT, Expand);
    setOperationAction(ISD::ADDCARRY, VT, Expand);
    setOperationAction(ISD::SUBCARRY, VT, Expand);
  }
  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);

  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTTZ, MVT::i16, Promote);

  // Popcount can count # of 1s in i64 but returns i32.
  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
  setOperationAction(ISD::CTPOP, MVT::i64, Legal);

  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
  setOperationAction(ISD::BSWAP, MVT::i64, Legal);

  setOperationAction(ISD::FSHL, MVT::i32, Legal);
  setOperationAction(ISD::FSHL, MVT::i64, Legal);
  setOperationAction(ISD::FSHR, MVT::i32, Legal);
  setOperationAction(ISD::FSHR, MVT::i64, Legal);

  for (unsigned IntExpOp :
       {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
        ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
        ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
        ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
    for (MVT VT : MVT::integer_valuetypes())
      setOperationAction(IntExpOp, VT, Expand);
  }

  for (unsigned FPExpOp :
       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
        ISD::FPOW, ISD::FCOPYSIGN}) {
    for (MVT VT : MVT::fp_valuetypes())
      setOperationAction(FPExpOp, VT, Expand);
  }

  // No extending loads from i32.
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
  }
  // Turn FP truncstore into trunc + store.
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  // Turn FP extload into load/fpextend.
  for (MVT VT : MVT::fp_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);

  // Expand BR_CC and SELECT_CC for all integer and fp types.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  for (MVT VT : MVT::fp_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  setOperationAction(ISD::BR_CC, MVT::Other, Expand);

  //
  // Handling of vector operations.
  //

  // Set the action for vector operations to "expand", then override it with
  // either "custom" or "legal" for specific cases.
  static const unsigned VectExpOps[] = {
    // Integer arithmetic:
    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
    ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
    // Logical/bit:
    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
    // Floating point arithmetic/math functions:
    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
    // Misc:
    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
    // Vector:
    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
  };

  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    for (unsigned VectExpOp : VectExpOps)
      setOperationAction(VectExpOp, VT, Expand);

    // Expand all extending loads and truncating stores:
    for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
      if (TargetVT == VT)
        continue;
      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
      setTruncStoreAction(VT, TargetVT, Expand);
    }

    // Normalize all inputs to SELECT to be vectors of i32.
    if (VT.getVectorElementType() != MVT::i32) {
      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
      setOperationAction(ISD::SELECT, VT, Promote);
      AddPromotedToType(ISD::SELECT, VT, VT32);
    }
    setOperationAction(ISD::SRA, VT, Custom);
    setOperationAction(ISD::SHL, VT, Custom);
    setOperationAction(ISD::SRL, VT, Custom);
  }

  // Extending loads from (native) vectors of i8 into (native) vectors of i16
  // are legal.
  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);

  // Types natively supported:
  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);

    setOperationAction(ISD::ADD, NativeVT, Legal);
    setOperationAction(ISD::SUB, NativeVT, Legal);
    setOperationAction(ISD::MUL, NativeVT, Legal);
    setOperationAction(ISD::AND, NativeVT, Legal);
    setOperationAction(ISD::OR,  NativeVT, Legal);
    setOperationAction(ISD::XOR, NativeVT, Legal);
  }

  // Custom lower unaligned loads.
  // Also, for both loads and stores, verify the alignment of the address
  // in case it is a compile-time constant. This is a usability feature to
  // provide a meaningful error message to users.
  for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
                 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::LOAD,  VT, Custom);
    setOperationAction(ISD::STORE, VT, Custom);
  }

  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
                 MVT::v2i32}) {
    setCondCodeAction(ISD::SETNE,  VT, Expand);
    setCondCodeAction(ISD::SETLE,  VT, Expand);
    setCondCodeAction(ISD::SETGE,  VT, Expand);
    setCondCodeAction(ISD::SETLT,  VT, Expand);
    setCondCodeAction(ISD::SETULE, VT, Expand);
    setCondCodeAction(ISD::SETUGE, VT, Expand);
    setCondCodeAction(ISD::SETULT, VT, Expand);
  }

  // Custom-lower bitcasts from i8 to v8i1.
  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
  setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);

  // V5+.
  setOperationAction(ISD::FMA,  MVT::f64, Expand);
  setOperationAction(ISD::FADD, MVT::f64, Expand);
  setOperationAction(ISD::FSUB, MVT::f64, Expand);
  setOperationAction(ISD::FMUL, MVT::f64, Expand);

  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);

  setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
  setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
  setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
  setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
  setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);

  // Handling of indexed loads/stores: default is "expand".
  //
  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
                 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
  }

  // Subtarget-specific operation actions.
  //
  if (Subtarget.hasV60Ops()) {
    setOperationAction(ISD::ROTL, MVT::i32, Legal);
    setOperationAction(ISD::ROTL, MVT::i64, Legal);
    setOperationAction(ISD::ROTR, MVT::i32, Legal);
    setOperationAction(ISD::ROTR, MVT::i64, Legal);
  }
  if (Subtarget.hasV66Ops()) {
    setOperationAction(ISD::FADD, MVT::f64, Legal);
    setOperationAction(ISD::FSUB, MVT::f64, Legal);
  }

  setTargetDAGCombine(ISD::VSELECT);

  if (Subtarget.useHVXOps())
    initializeHVXLowering();

  computeRegisterProperties(&HRI);

  //
  // Library calls for unsupported operations
  //
  bool FastMath  = EnableFastMath;

  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");

  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");

  // This is the only fast library function for sqrtd.
  if (FastMath)
    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");

  // Prefix is: nothing  for "slow-math",
  //            "fast2_" for V5+ fast-math double-precision
  // (actually, keep fast-math and fast-math2 separate for now)
  if (FastMath) {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
  } else {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
  }

  if (FastMath)
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
  else
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");

  // These cause problems when the shift amount is non-constant.
  setLibcallName(RTLIB::SHL_I128, nullptr);
  setLibcallName(RTLIB::SRL_I128, nullptr);
  setLibcallName(RTLIB::SRA_I128, nullptr);
}

const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((HexagonISD::NodeType)Opcode) {
  case HexagonISD::ADDC:          return "HexagonISD::ADDC";
  case HexagonISD::SUBC:          return "HexagonISD::SUBC";
  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
  case HexagonISD::CALL:          return "HexagonISD::CALL";
  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
  case HexagonISD::CP:            return "HexagonISD::CP";
  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
  case HexagonISD::JT:            return "HexagonISD::JT";
  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
  case HexagonISD::VASL:          return "HexagonISD::VASL";
  case HexagonISD::VASR:          return "HexagonISD::VASR";
  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
  case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
  case HexagonISD::VROR:          return "HexagonISD::VROR";
  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
  case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
  case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
  case HexagonISD::VZERO:         return "HexagonISD::VZERO";
  case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
  case HexagonISD::D2P:           return "HexagonISD::D2P";
  case HexagonISD::P2D:           return "HexagonISD::P2D";
  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
  case HexagonISD::OP_END:        break;
  }
  return nullptr;
}

void
HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
      unsigned NeedAlign) const {
  auto *CA = dyn_cast<ConstantSDNode>(Ptr);
  if (!CA)
    return;
  unsigned Addr = CA->getZExtValue();
  unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
  if (HaveAlign < NeedAlign) {
    std::string ErrMsg;
    raw_string_ostream O(ErrMsg);
    O << "Misaligned constant address: " << format_hex(Addr, 10)
      << " has alignment " << HaveAlign
      << ", but the memory access requires " << NeedAlign;
    if (DebugLoc DL = dl.getDebugLoc())
      DL.print(O << ", at ");
    report_fatal_error(O.str());
  }
}

// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
// intrinsic.
static bool isBrevLdIntrinsic(const Value *Inst) {
  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
          ID == Intrinsic::hexagon_L2_loadri_pbr ||
          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
          ID == Intrinsic::hexagon_L2_loadrub_pbr);
}

// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
// instruction. So far we only handle bitcast, extract value and bit reverse
// load intrinsic instructions. Should we handle CGEP ?
static Value *getBrevLdObject(Value *V) {
  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
      Operator::getOpcode(V) == Instruction::BitCast)
    V = cast<Operator>(V)->getOperand(0);
  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
    V = cast<Instruction>(V)->getOperand(0);
  return V;
}

// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
// a back edge. If the back edge comes from the intrinsic itself, the incoming
// edge is returned.
static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
  const BasicBlock *Parent = PN->getParent();
  int Idx = -1;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
    BasicBlock *Blk = PN->getIncomingBlock(i);
    // Determine if the back edge is originated from intrinsic.
    if (Blk == Parent) {
      Value *BackEdgeVal = PN->getIncomingValue(i);
      Value *BaseVal;
      // Loop over till we return the same Value or we hit the IntrBaseVal.
      do {
        BaseVal = BackEdgeVal;
        BackEdgeVal = getBrevLdObject(BackEdgeVal);
      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
      // If the getBrevLdObject returns IntrBaseVal, we should return the
      // incoming edge.
      if (IntrBaseVal == BackEdgeVal)
        continue;
      Idx = i;
      break;
    } else // Set the node to incoming edge.
      Idx = i;
  }
  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
  return PN->getIncomingValue(Idx);
}

// Bit-reverse Load Intrinsic: Figure out the underlying object the base
// pointer points to, for the bit-reverse load intrinsic. Setting this to
// memoperand might help alias analysis to figure out the dependencies.
static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
  Value *IntrBaseVal = V;
  Value *BaseVal;
  // Loop over till we return the same Value, implies we either figure out
  // the object or we hit a PHI
  do {
    BaseVal = V;
    V = getBrevLdObject(V);
  } while (BaseVal != V);

  // Identify the object from PHINode.
  if (const PHINode *PN = dyn_cast<PHINode>(V))
    return returnEdge(PN, IntrBaseVal);
  // For non PHI nodes, the object is the last value returned by getBrevLdObject
  else
    return V;
}

/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                               const CallInst &I,
                                               MachineFunction &MF,
                                               unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::hexagon_L2_loadrd_pbr:
  case Intrinsic::hexagon_L2_loadri_pbr:
  case Intrinsic::hexagon_L2_loadrh_pbr:
  case Intrinsic::hexagon_L2_loadruh_pbr:
  case Intrinsic::hexagon_L2_loadrb_pbr:
  case Intrinsic::hexagon_L2_loadrub_pbr: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    auto &Cont = I.getCalledFunction()->getParent()->getContext();
    // The intrinsic function call is of the form { ElTy, i8* }
    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
    // should be derived from ElTy.
    Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
    Info.memVT = MVT::getVT(ElTy);
    llvm::Value *BasePtrVal = I.getOperand(0);
    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
    // The offset value comes through Modifier register. For now, assume the
    // offset is 0.
    Info.offset = 0;
    Info.align =
        MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)));
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::hexagon_V6_vgathermw:
  case Intrinsic::hexagon_V6_vgathermw_128B:
  case Intrinsic::hexagon_V6_vgathermh:
  case Intrinsic::hexagon_V6_vgathermh_128B:
  case Intrinsic::hexagon_V6_vgathermhw:
  case Intrinsic::hexagon_V6_vgathermhw_128B:
  case Intrinsic::hexagon_V6_vgathermwq:
  case Intrinsic::hexagon_V6_vgathermwq_128B:
  case Intrinsic::hexagon_V6_vgathermhq:
  case Intrinsic::hexagon_V6_vgathermhq_128B:
  case Intrinsic::hexagon_V6_vgathermhwq:
  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
    const Module &M = *I.getParent()->getParent()->getParent();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Type *VecTy = I.getArgOperand(1)->getType();
    Info.memVT = MVT::getVT(VecTy);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align =
        MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MOVolatile;
    return true;
  }
  default:
    break;
  }
  return false;
}

bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
  return X.getValueType().isScalarInteger(); // 'tstbit'
}

bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
}

bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isSimple() || !VT2.isSimple())
    return false;
  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
}

bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
  return isOperationLegalOrCustom(ISD::FMA, VT);
}

// Should we expand the build vector with shuffles?
bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
      unsigned DefinedValues) const {
  return false;
}

bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
                                               EVT VT) const {
  return true;
}

TargetLoweringBase::LegalizeTypeAction
HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
  unsigned VecLen = VT.getVectorNumElements();
  MVT ElemTy = VT.getVectorElementType();

  if (VecLen == 1 || VT.isScalableVector())
    return TargetLoweringBase::TypeScalarizeVector;

  if (Subtarget.useHVXOps()) {
    unsigned HwLen = Subtarget.getVectorLength();
    // If the size of VT is at least half of the vector length,
    // widen the vector. Note: the threshold was not selected in
    // any scientific way.
    ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
    if (llvm::find(Tys, ElemTy) != Tys.end()) {
      unsigned HwWidth = 8*HwLen;
      unsigned VecWidth = VT.getSizeInBits();
      if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
        return TargetLoweringBase::TypeWidenVector;
    }
    // Split vectors of i1 that correspond to (byte) vector pairs.
    if (ElemTy == MVT::i1 && VecLen == 2*HwLen)
      return TargetLoweringBase::TypeSplitVector;
  }

  // Always widen (remaining) vectors of i1.
  if (ElemTy == MVT::i1)
    return TargetLoweringBase::TypeWidenVector;

  return TargetLoweringBase::TypeSplitVector;
}

std::pair<SDValue, int>
HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
  if (Addr.getOpcode() == ISD::ADD) {
    SDValue Op1 = Addr.getOperand(1);
    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
      return { Addr.getOperand(0), CN->getSExtValue() };
  }
  return { Addr, 0 };
}

// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
// to select data from, V3 is the permutation.
SDValue
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
      const {
  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
  ArrayRef<int> AM = SVN->getMask();
  assert(AM.size() <= 8 && "Unexpected shuffle mask");
  unsigned VecLen = AM.size();

  MVT VecTy = ty(Op);
  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
         "HVX shuffles should be legal");
  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");

  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  const SDLoc &dl(Op);

  // If the inputs are not the same as the output, bail. This is not an
  // error situation, but complicates the handling and the default expansion
  // (into BUILD_VECTOR) should be adequate.
  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
    return SDValue();

  // Normalize the mask so that the first non-negative index comes from
  // the first operand.
  SmallVector<int,8> Mask(AM.begin(), AM.end());
  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
  if (F == AM.size())
    return DAG.getUNDEF(VecTy);
  if (AM[F] >= int(VecLen)) {
    ShuffleVectorSDNode::commuteMask(Mask);
    std::swap(Op0, Op1);
  }

  // Express the shuffle mask in terms of bytes.
  SmallVector<int,8> ByteMask;
  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    int M = Mask[i];
    if (M < 0) {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(-1);
    } else {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(M*ElemBytes + j);
    }
  }
  assert(ByteMask.size() <= 8);

  // All non-undef (non-negative) indexes are well within [0..127], so they
  // fit in a single byte. Build two 64-bit words:
  // - MaskIdx where each byte is the corresponding index (for non-negative
  //   indexes), and 0xFF for negative indexes, and
  // - MaskUnd that has 0xFF for each negative index.
  uint64_t MaskIdx = 0;
  uint64_t MaskUnd = 0;
  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
    unsigned S = 8*i;
    uint64_t M = ByteMask[i] & 0xFF;
    if (M == 0xFF)
      MaskUnd |= M << S;
    MaskIdx |= M << S;
  }

  if (ByteMask.size() == 4) {
    // Identity.
    if (MaskIdx == (0x03020100 | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x00010203 | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Byte packs.
    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
    if (MaskIdx == (0x06040200 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
    if (MaskIdx == (0x07050301 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);

    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
    if (MaskIdx == (0x02000604 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
    if (MaskIdx == (0x03010705 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
  }

  if (ByteMask.size() == 8) {
    // Identity.
    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Halfword picks.
    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
      VectorPair P = opSplit(Op0, dl, DAG);
      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
    }

    // Byte packs.
    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
  }

  return SDValue();
}

// Create a Hexagon-specific node for shifting a vector by an integer.
SDValue
HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
      const {
  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
    if (SDValue S = BVN->getSplatValue()) {
      unsigned NewOpc;
      switch (Op.getOpcode()) {
        case ISD::SHL:
          NewOpc = HexagonISD::VASL;
          break;
        case ISD::SRA:
          NewOpc = HexagonISD::VASR;
          break;
        case ISD::SRL:
          NewOpc = HexagonISD::VLSR;
          break;
        default:
          llvm_unreachable("Unexpected shift opcode");
      }
      return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
    }
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
  return getVectorShiftByInt(Op, DAG);
}

SDValue
HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
  if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
    return Op;
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT InpTy = ty(InpV);
  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
  const SDLoc &dl(Op);

  // Handle conversion from i8 to v8i1.
  if (ResTy == MVT::v8i1) {
    SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
    SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
    return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
  }

  return SDValue();
}

bool
HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
      MVT VecTy, SelectionDAG &DAG,
      MutableArrayRef<ConstantInt*> Consts) const {
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();
  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
  bool AllConst = true;

  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    SDValue V = Values[i];
    if (V.isUndef()) {
      Consts[i] = ConstantInt::get(IntTy, 0);
      continue;
    }
    // Make sure to always cast to IntTy.
    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
      const ConstantInt *CI = CN->getConstantIntValue();
      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
      const ConstantFP *CF = CN->getConstantFPValue();
      APInt A = CF->getValueAPF().bitcastToAPInt();
      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
    } else {
      AllConst = false;
    }
  }
  return AllConst;
}

SDValue
HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,4> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  if (ElemTy == MVT::i16) {
    assert(Elem.size() == 2);
    if (AllConst) {
      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
                   Consts[1]->getZExtValue() << 16;
      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
    }
    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
                         {Elem[1], Elem[0]}, DAG);
    return DAG.getBitcast(MVT::v2i16, N);
  }

  if (ElemTy == MVT::i8) {
    // First try generating a constant.
    if (AllConst) {
      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
                  Consts[2]->getZExtValue() << 24;
      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
    }

    // Then try splat.
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }

    // Generate
    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
    assert(Elem.size() == 4);
    SDValue Vs[4];
    for (unsigned i = 0; i != 4; ++i) {
      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
    }
    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});

    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
    return DAG.getBitcast(MVT::v4i8, R);
  }

#ifndef NDEBUG
  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
#endif
  llvm_unreachable("Unexpected vector element type");
}

SDValue
HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,8> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  // First try splat if possible.
  if (ElemTy == MVT::i16) {
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }
  }

  // Then try constant.
  if (AllConst) {
    uint64_t Val = 0;
    unsigned W = ElemTy.getSizeInBits();
    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
    for (unsigned i = 0; i != Num; ++i)
      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
    return DAG.getBitcast(VecTy, V0);
  }

  // Build two 32-bit vectors and concatenate.
  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
  SDValue L = (ElemTy == MVT::i32)
                ? Elem[0]
                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
  SDValue H = (ElemTy == MVT::i32)
                ? Elem[1]
                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
}

SDValue
HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
                                     SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  assert(!ValTy.isVector() ||
         VecTy.getVectorElementType() == ValTy.getVectorElementType());
  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
  assert((VecWidth % ElemWidth) == 0);
  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);

  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
  // without any coprocessors).
  if (ElemWidth == 1) {
    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
    // Check if this is an extract of the lowest bit.
    if (IdxN) {
      // Extracting the lowest bit is a no-op, but it changes the type,
      // so it must be kept as an operation to avoid errors related to
      // type mismatches.
      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
    }

    // If the value extracted is a single bit, use tstbit.
    if (ValWidth == 1) {
      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
      SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
      SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
    }

    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
    // a predicate register. The elements of the vector are repeated
    // in the register (if necessary) so that the total number is 8.
    // The extracted subvector will need to be expanded in such a way.
    unsigned Scale = VecWidth / ValWidth;

    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
    // position 0.
    assert(ty(IdxV) == MVT::i32);
    unsigned VecRep = 8 / VecWidth;
    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                             DAG.getConstant(8*VecRep, dl, MVT::i32));
    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
    while (Scale > 1) {
      // The longest possible subvector is at most 32 bits, so it is always
      // contained in the low subregister.
      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
      T1 = expandPredicate(T1, dl, DAG);
      Scale /= 2;
    }

    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
  }

  assert(VecWidth == 32 || VecWidth == 64);

  // Cast everything to scalar integer types.
  MVT ScalarTy = tyScalar(VecTy);
  VecV = DAG.getBitcast(ScalarTy, VecV);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue ExtV;

  if (IdxN) {
    unsigned Off = IdxN->getZExtValue() * ElemWidth;
    if (VecWidth == 64 && ValWidth == 32) {
      assert(Off == 0 || Off == 32);
      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
    } else if (Off == 0 && (ValWidth % 8) == 0) {
      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
    } else {
      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
      // The return type of EXTRACTU must be the same as the type of the
      // input vector.
      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                         {VecV, WidthV, OffV});
    }
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                               DAG.getConstant(ElemWidth, dl, MVT::i32));
    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                       {VecV, WidthV, OffV});
  }

  // Cast ExtV to the requested result type.
  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
  ExtV = DAG.getBitcast(ResTy, ExtV);
  return ExtV;
}

SDValue
HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
                                    const SDLoc &dl, MVT ValTy,
                                    SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  if (VecTy.getVectorElementType() == MVT::i1) {
    MVT ValTy = ty(ValV);
    assert(ValTy.getVectorElementType() == MVT::i1);
    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
    unsigned VecLen = VecTy.getVectorNumElements();
    unsigned Scale = VecLen / ValTy.getVectorNumElements();
    assert(Scale > 1);

    for (unsigned R = Scale; R > 1; R /= 2) {
      ValR = contractPredicate(ValR, dl, DAG);
      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                         DAG.getUNDEF(MVT::i32), ValR);
    }
    // The longest possible subvector is at most 32 bits, so it is always
    // contained in the low subregister.
    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);

    unsigned ValBytes = 64 / Scale;
    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                              DAG.getConstant(8, dl, MVT::i32));
    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                              {VecR, ValR, Width, Idx});
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
  }

  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  assert(VecWidth == 32 || VecWidth == 64);
  assert((VecWidth % ValWidth) == 0);

  // Cast everything to scalar integer types.
  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
  // The actual type of ValV may be different than ValTy (which is related
  // to the vector type).
  unsigned VW = ty(ValV).getSizeInBits();
  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
  VecV = DAG.getBitcast(ScalarTy, VecV);
  if (VW != VecWidth)
    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue InsV;

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
    unsigned W = C->getZExtValue() * ValWidth;
    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  }

  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
}

SDValue
HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
                                       SelectionDAG &DAG) const {
  assert(ty(Vec32).getSizeInBits() == 32);
  if (isUndef(Vec32))
    return DAG.getUNDEF(MVT::i64);
  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
}

SDValue
HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
                                         SelectionDAG &DAG) const {
  assert(ty(Vec64).getSizeInBits() == 64);
  if (isUndef(Vec64))
    return DAG.getUNDEF(MVT::i32);
  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
}

SDValue
HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
      const {
  if (Ty.isVector()) {
    assert(Ty.isInteger() && "Only integer vectors are supported here");
    unsigned W = Ty.getSizeInBits();
    if (W <= 64)
      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
    return DAG.getNode(HexagonISD::VZERO, dl, Ty);
  }

  if (Ty.isInteger())
    return DAG.getConstant(0, dl, Ty);
  if (Ty.isFloatingPoint())
    return DAG.getConstantFP(0.0, dl, Ty);
  llvm_unreachable("Invalid type for zero");
}

SDValue
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  unsigned BW = VecTy.getSizeInBits();
  const SDLoc &dl(Op);
  SmallVector<SDValue,8> Ops;
  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
    Ops.push_back(Op.getOperand(i));

  if (BW == 32)
    return buildVector32(Ops, dl, VecTy, DAG);
  if (BW == 64)
    return buildVector64(Ops, dl, VecTy, DAG);

  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
    // Check if this is a special case or all-0 or all-1.
    bool All0 = true, All1 = true;
    for (SDValue P : Ops) {
      auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
      if (CN == nullptr) {
        All0 = All1 = false;
        break;
      }
      uint32_t C = CN->getZExtValue();
      All0 &= (C == 0);
      All1 &= (C == 1);
    }
    if (All0)
      return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
    if (All1)
      return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);

    // For each i1 element in the resulting predicate register, put 1
    // shifted by the index of the element into a general-purpose register,
    // then or them together and transfer it back into a predicate register.
    SDValue Rs[8];
    SDValue Z = getZero(dl, MVT::i32, DAG);
    // Always produce 8 bits, repeat inputs if necessary.
    unsigned Rep = 8 / VecTy.getVectorNumElements();
    for (unsigned i = 0; i != 8; ++i) {
      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
    }
    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
    }
    // Move the value directly to a predicate register.
    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
                                           SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  const SDLoc &dl(Op);
  if (VecTy.getSizeInBits() == 64) {
    assert(Op.getNumOperands() == 2);
    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
                       Op.getOperand(0));
  }

  MVT ElemTy = VecTy.getVectorElementType();
  if (ElemTy == MVT::i1) {
    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
    MVT OpTy = ty(Op.getOperand(0));
    // Scale is how many times the operands need to be contracted to match
    // the representation in the target register.
    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
    assert(Scale == Op.getNumOperands() && Scale > 1);

    // First, convert all bool vectors to integers, then generate pairwise
    // inserts to form values of doubled length. Up until there are only
    // two values left to concatenate, all of these values will fit in a
    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
    SmallVector<SDValue,4> Words[2];
    unsigned IdxW = 0;

    for (SDValue P : Op.getNode()->op_values()) {
      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
      for (unsigned R = Scale; R > 1; R /= 2) {
        W = contractPredicate(W, dl, DAG);
        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                        DAG.getUNDEF(MVT::i32), W);
      }
      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
      Words[IdxW].push_back(W);
    }

    while (Scale > 2) {
      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
      Words[IdxW ^ 1].clear();

      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
        // Insert W1 into W0 right next to the significant bits of W0.
        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                                {W0, W1, WidthV, WidthV});
        Words[IdxW ^ 1].push_back(T);
      }
      IdxW ^= 1;
      Scale /= 2;
    }

    // Another sanity check. At this point there should only be two words
    // left, and Scale should be 2.
    assert(Scale == 2 && Words[IdxW].size() == 2);

    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                             Words[IdxW][1], Words[IdxW][0]);
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Vec = Op.getOperand(0);
  MVT ElemTy = ty(Vec).getVectorElementType();
  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
                                              SelectionDAG &DAG) const {
  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
                       ty(Op), ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                              SelectionDAG &DAG) const {
  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue ValV = Op.getOperand(1);
  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
                      SDLoc(Op), ty(ValV), DAG);
}

bool
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
  // Assuming the caller does not have either a signext or zeroext modifier, and
  // only one value is accepted, any reasonable truncation is allowed.
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;

  // FIXME: in principle up to 64-bit could be made safe, but it would be very
  // fragile at the moment: any support for multiple value returns would be
  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
  return Ty1->getPrimitiveSizeInBits() <= 32;
}

SDValue
HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  unsigned ClaimAlign = LN->getAlignment();
  validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
  // Call LowerUnalignedLoad for all loads, it recognizes loads that
  // don't need extra aligning.
  return LowerUnalignedLoad(Op, DAG);
}

SDValue
HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
  unsigned ClaimAlign = SN->getAlignment();
  SDValue Ptr = SN->getBasePtr();
  const SDLoc &dl(Op);
  validateConstPtrAlignment(Ptr, dl, ClaimAlign);

  MVT StoreTy = SN->getMemoryVT().getSimpleVT();
  unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
  if (ClaimAlign < NeedAlign)
    return expandUnalignedStore(SN, DAG);
  return Op;
}

SDValue
HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
      const {
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  MVT LoadTy = ty(Op);
  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
  unsigned HaveAlign = LN->getAlignment();
  if (HaveAlign >= NeedAlign)
    return Op;

  const SDLoc &dl(Op);
  const DataLayout &DL = DAG.getDataLayout();
  LLVMContext &Ctx = *DAG.getContext();

  // If the load aligning is disabled or the load can be broken up into two
  // smaller legal loads, do the default (target-independent) expansion.
  bool DoDefault = false;
  // Handle it in the default way if this is an indexed load.
  if (!LN->isUnindexed())
    DoDefault = true;

  if (!AlignLoads) {
    if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
                                       *LN->getMemOperand()))
      return Op;
    DoDefault = true;
  }
  if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
                                : MVT::getVectorVT(MVT::i8, HaveAlign);
    DoDefault =
        allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
  }
  if (DoDefault) {
    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
    return DAG.getMergeValues({P.first, P.second}, dl);
  }

  // The code below generates two loads, both aligned as NeedAlign, and
  // with the distance of NeedAlign between them. For that to cover the
  // bits that need to be loaded (and without overlapping), the size of
  // the loads should be equal to NeedAlign. This is true for all loadable
  // types, but add an assertion in case something changes in the future.
  assert(LoadTy.getSizeInBits() == 8*NeedAlign);

  unsigned LoadLen = NeedAlign;
  SDValue Base = LN->getBasePtr();
  SDValue Chain = LN->getChain();
  auto BO = getBaseAndOffset(Base);
  unsigned BaseOpc = BO.first.getOpcode();
  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
    return Op;

  if (BO.second % LoadLen != 0) {
    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
    BO.second -= BO.second % LoadLen;
  }
  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
                    DAG.getConstant(NeedAlign, dl, MVT::i32))
      : BO.first;
  SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
  SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);

  MachineMemOperand *WideMMO = nullptr;
  if (MachineMemOperand *MMO = LN->getMemOperand()) {
    MachineFunction &MF = DAG.getMachineFunction();
    WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
                    2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
                    MMO->getSyncScopeID(), MMO->getOrdering(),
                    MMO->getFailureOrdering());
  }

  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);

  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
                                {Load1, Load0, BaseNoOff.getOperand(0)});
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                                 Load0.getValue(1), Load1.getValue(1));
  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
  return M;
}

SDValue
HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
  auto *CY = dyn_cast<ConstantSDNode>(Y);
  if (!CY)
    return SDValue();

  const SDLoc &dl(Op);
  SDVTList VTs = Op.getNode()->getVTList();
  assert(VTs.NumVTs == 2);
  assert(VTs.VTs[1] == MVT::i1);
  unsigned Opc = Op.getOpcode();

  if (CY) {
    uint32_t VY = CY->getZExtValue();
    assert(VY != 0 && "This should have been folded");
    // X +/- 1
    if (VY != 1)
      return SDValue();

    if (Opc == ISD::UADDO) {
      SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
                                ISD::SETEQ);
      return DAG.getMergeValues({Op, Ov}, dl);
    }
    if (Opc == ISD::USUBO) {
      SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
                                DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
      return DAG.getMergeValues({Op, Ov}, dl);
    }
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
  const SDLoc &dl(Op);
  unsigned Opc = Op.getOpcode();
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);

  if (Opc == ISD::ADDCARRY)
    return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
                       { X, Y, C });

  EVT CarryTy = C.getValueType();
  SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
                             { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
  SDValue Out[] = { SubC.getValue(0),
                    DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
  return DAG.getMergeValues(Out, dl);
}

SDValue
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain     = Op.getOperand(0);
  SDValue Offset    = Op.getOperand(1);
  SDValue Handler   = Op.getOperand(2);
  SDLoc dl(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Mark function as containing a call to EH_RETURN.
  HexagonMachineFunctionInfo *FuncInfo =
    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
  FuncInfo->setHasEHReturn();

  unsigned OffsetReg = Hexagon::R28;

  SDValue StoreAddr =
      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
                  DAG.getIntPtrConstant(4, dl));
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);

  // Not needed we already use it as explict input to EH_RETURN.
  // MF.getRegInfo().addLiveOut(OffsetReg);

  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
}

SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  unsigned Opc = Op.getOpcode();

  // Handle INLINEASM first.
  if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
    return LowerINLINEASM(Op, DAG);

  if (isHvxOperation(Op)) {
    // If HVX lowering returns nothing, try the default lowering.
    if (SDValue V = LowerHvxOperation(Op, DAG))
      return V;
  }

  switch (Opc) {
    default:
#ifndef NDEBUG
      Op.getNode()->dumpr(&DAG);
      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
        errs() << "Error: check for a non-legal type in this operation\n";
#endif
      llvm_unreachable("Should not custom lower this!");
    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
    case ISD::LOAD:                 return LowerLoad(Op, DAG);
    case ISD::STORE:                return LowerStore(Op, DAG);
    case ISD::UADDO:
    case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
    case ISD::ADDCARRY:
    case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
    case ISD::SRA:
    case ISD::SHL:
    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
    case ISD::ROTL:                 return LowerROTL(Op, DAG);
    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
    case ISD::VASTART:              return LowerVASTART(Op, DAG);
    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::SETCC:                return LowerSETCC(Op, DAG);
    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
      break;
  }

  return SDValue();
}

void
HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
                                             SmallVectorImpl<SDValue> &Results,
                                             SelectionDAG &DAG) const {
  // We are only custom-lowering stores to verify the alignment of the
  // address if it is a compile-time constant. Since a store can be modified
  // during type-legalization (the value being stored may need legalization),
  // return empty Results here to indicate that we don't really make any
  // changes in the custom lowering.
  if (N->getOpcode() != ISD::STORE)
    return TargetLowering::LowerOperationWrapper(N, Results, DAG);
}

void
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  const SDLoc &dl(N);
  switch (N->getOpcode()) {
    case ISD::SRL:
    case ISD::SRA:
    case ISD::SHL:
      return;
    case ISD::BITCAST:
      // Handle a bitcast from v8i1 to i8.
      if (N->getValueType(0) == MVT::i8) {
        SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
                             N->getOperand(0), DAG);
        SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
        Results.push_back(T);
      }
      break;
  }
}

SDValue
HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
      const {
  SDValue Op(N, 0);
  if (isHvxOperation(Op)) {
    if (SDValue V = PerformHvxDAGCombine(N, DCI))
      return V;
    return SDValue();
  }

  const SDLoc &dl(Op);
  unsigned Opc = Op.getOpcode();

  if (Opc == HexagonISD::P2D) {
    SDValue P = Op.getOperand(0);
    switch (P.getOpcode()) {
      case HexagonISD::PTRUE:
        return DCI.DAG.getConstant(-1, dl, ty(Op));
      case HexagonISD::PFALSE:
        return getZero(dl, ty(Op), DCI.DAG);
      default:
        break;
    }
  } else if (Opc == ISD::VSELECT) {
    // This is pretty much duplicated in HexagonISelLoweringHVX...
    //
    // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
    SDValue Cond = Op.getOperand(0);
    if (Cond->getOpcode() == ISD::XOR) {
      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
      if (C1->getOpcode() == HexagonISD::PTRUE) {
        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
                                       Op.getOperand(2), Op.getOperand(1));
        return VSel;
      }
    }
  }

  return SDValue();
}

/// Returns relocation base for the given PIC jumptable.
SDValue
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                SelectionDAG &DAG) const {
  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
  EVT VT = Table.getValueType();
  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
}

//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//

TargetLowering::ConstraintType
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      case 'q':
      case 'v':
        if (Subtarget.useHVXOps())
          return C_RegisterClass;
        break;
      case 'a':
        return C_RegisterClass;
      default:
        break;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {

  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':   // R0-R31
      switch (VT.SimpleTy) {
      default:
        return {0u, nullptr};
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        return {0u, &Hexagon::IntRegsRegClass};
      case MVT::i64:
      case MVT::f64:
        return {0u, &Hexagon::DoubleRegsRegClass};
      }
      break;
    case 'a': // M0-M1
      if (VT != MVT::i32)
        return {0u, nullptr};
      return {0u, &Hexagon::ModRegsRegClass};
    case 'q': // q0-q3
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 512:
      case 1024:
        return {0u, &Hexagon::HvxQRRegClass};
      }
      break;
    case 'v': // V0-V31
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 512:
        return {0u, &Hexagon::HvxVRRegClass};
      case 1024:
        if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
          return {0u, &Hexagon::HvxVRRegClass};
        return {0u, &Hexagon::HvxWRRegClass};
      case 2048:
        return {0u, &Hexagon::HvxWRRegClass};
      }
      break;
    default:
      return {0u, nullptr};
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                         bool ForCodeSize) const {
  return true;
}

/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                  const AddrMode &AM, Type *Ty,
                                                  unsigned AS, Instruction *I) const {
  if (Ty->isSized()) {
    // When LSR detects uses of the same base address to access different
    // types (e.g. unions), it will assume a conservative type for these
    // uses:
    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
    // The type Ty passed here would then be "void". Skip the alignment
    // checks, but do not return false right away, since that confuses
    // LSR into crashing.
    unsigned A = DL.getABITypeAlignment(Ty);
    // The base offset must be a multiple of the alignment.
    if ((AM.BaseOffs % A) != 0)
      return false;
    // The shifted offset must fit in 11 bits.
    if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
      return false;
  }

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  int Scale = AM.Scale;
  if (Scale < 0)
    Scale = -Scale;
  switch (Scale) {
  case 0:  // No scale reg, "r+i", "r", or just "i".
    break;
  default: // No scaled addressing mode.
    return false;
  }
  return true;
}

/// Return true if folding a constant offset with the given GlobalAddress is
/// legal.  It is frequently not legal in PIC relocation models.
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
      const {
  return HTM.getRelocationModel() == Reloc::Static;
}

/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  return Imm >= -512 && Imm <= 511;
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
                                 SDValue Callee,
                                 CallingConv::ID CalleeCC,
                                 bool IsVarArg,
                                 bool IsCalleeStructRet,
                                 bool IsCallerStructRet,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
                                 SelectionDAG& DAG) const {
  const Function &CallerF = DAG.getMachineFunction().getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // ***************************************************************************
  //  Look for obvious safe cases to perform tail call optimization that do not
  //  require ABI changes.
  // ***************************************************************************

  // If this is a tail call via a function pointer, then don't do it!
  if (!isa<GlobalAddressSDNode>(Callee) &&
      !isa<ExternalSymbolSDNode>(Callee)) {
    return false;
  }

  // Do not optimize if the calling conventions do not match and the conventions
  // used are not C or Fast.
  if (!CCMatch) {
    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
    // If R & E, then ok.
    if (!R || !E)
      return false;
  }

  // Do not tail call optimize vararg calls.
  if (IsVarArg)
    return false;

  // Also avoid tail call optimization if either caller or callee uses struct
  // return semantics.
  if (IsCalleeStructRet || IsCallerStructRet)
    return false;

  // In addition to the cases above, we also disable Tail Call Optimization if
  // the calling convention code that at least one outgoing argument needs to
  // go on the stack. We cannot check that here because at this point that
  // information is not available.
  return true;
}

/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
///
/// If DstAlign is zero that means it's safe to destination alignment can
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
/// a need to check it against alignment requirement, probably because the
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
/// does not need to be loaded.  It returns EVT::Other if the type should be
/// determined using generic target-independent logic.
EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
      unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
      bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {

  auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
    return (GivenA % MinA) == 0;
  };

  if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
    return MVT::i64;
  if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
    return MVT::i32;
  if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
    return MVT::i16;

  return MVT::Other;
}

bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
    EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
    bool *Fast) const {
  if (Fast)
    *Fast = false;
  return Subtarget.isHVXVectorType(VT.getSimpleVT());
}

std::pair<const TargetRegisterClass*, uint8_t>
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
      MVT VT) const {
  if (Subtarget.isHVXVectorType(VT, true)) {
    unsigned BitWidth = VT.getSizeInBits();
    unsigned VecWidth = Subtarget.getVectorLength() * 8;

    if (VT.getVectorElementType() == MVT::i1)
      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
    if (BitWidth == VecWidth)
      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
    assert(BitWidth == 2 * VecWidth);
    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
  }

  return TargetLowering::findRepresentativeClass(TRI, VT);
}

bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
      ISD::LoadExtType ExtTy, EVT NewVT) const {
  // TODO: This may be worth removing. Check regression tests for diffs.
  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
    return false;

  auto *L = cast<LoadSDNode>(Load);
  std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
  // Small-data object, do not shrink.
  if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
    return false;
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
    auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
    const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
    return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
  }
  return true;
}

Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
      AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  auto PT = cast<PointerType>(Addr->getType());
  Type *Ty = PT->getElementType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
                                   : Intrinsic::hexagon_L4_loadd_locked;
  Function *Fn = Intrinsic::getDeclaration(M, IntID);

  PointerType *NewPtrTy
    = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
  Addr = Builder.CreateBitCast(Addr, NewPtrTy);

  Value *Call = Builder.CreateCall(Fn, Addr, "larx");

  return Builder.CreateBitCast(Call, Ty);
}

/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
      Value *Val, Value *Addr, AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  Type *Ty = Val->getType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();

  Type *CastTy = Builder.getIntNTy(SZ);
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
                                   : Intrinsic::hexagon_S4_stored_locked;
  Function *Fn = Intrinsic::getDeclaration(M, IntID);

  unsigned AS = Addr->getType()->getPointerAddressSpace();
  Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
  Val = Builder.CreateBitCast(Val, CastTy);

  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
  return Ext;
}

TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return LI->getType()->getPrimitiveSizeInBits() > 64
             ? AtomicExpansionKind::LLOnly
             : AtomicExpansionKind::None;
}

bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
}

TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
    AtomicCmpXchgInst *AI) const {
  const DataLayout &DL = AI->getModule()->getDataLayout();
  unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
  if (Size >= 4 && Size <= 8)
    return AtomicExpansionKind::LLSC;
  return AtomicExpansionKind::None;
}